8GAB

Crystal structure of CTLA-4 in complex with a high affinity CTLA-4 binder


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.72 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.247 
  • R-Value Observed: 0.250 

Starting Model: in silico
View more details

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Design of High Affinity Binders to Convex Protein Target Sites.

Yang, W.Hicks, D.R.Ghosh, A.Schwartze, T.A.Conventry, B.Goreshnik, I.Allen, A.Halabiya, S.F.Kim, C.J.Hinck, C.S.Lee, D.S.Bera, A.K.Li, Z.Wang, Y.Schlichthaerle, T.Cao, L.Huang, B.Garrett, S.Gerben, S.R.Rettie, S.Heine, P.Murray, A.Edman, N.Carter, L.Stewart, L.Almo, S.Hinck, A.P.Baker, D.

(2024) bioRxiv 

  • DOI: https://doi.org/10.1101/2024.05.01.592114
  • Primary Citation of Related Structures:  
    8GAB, 8GAC, 8GAD

  • PubMed Abstract: 

    While there has been progress in the de novo design of small globular miniproteins (50-65 residues) to bind to primarily concave regions of a target protein surface, computational design of minibinders to convex binding sites remains an outstanding challenge due to low level of overall shape complementarity. Here, we describe a general approach to generate computationally designed proteins which bind to convex target sites that employ geometrically matching concave scaffolds. We used this approach to design proteins binding to TGFβRII, CTLA-4 and PD-L1 which following experimental optimization have low nanomolar to picomolar affinities and potent biological activity. Co-crystal structures of the TGFβRII and CTLA-4 binders in complex with the receptors are in close agreement with the design models. Our approach provides a general route to generating very high affinity binders to convex protein target sites.


  • Organizational Affiliation

    Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CTLA-4 binder
A, C
109synthetic constructMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Cytotoxic T-lymphocyte protein 4
B, D
126Homo sapiensMutation(s): 0 
Gene Names: CTLA4CD152
UniProt & NIH Common Fund Data Resources
Find proteins for P16410 (Homo sapiens)
Explore P16410 
Go to UniProtKB:  P16410
PHAROS:  P16410
GTEx:  ENSG00000163599 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP16410
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
K
Query on K

Download Ideal Coordinates CCD File 
E [auth D]POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.72 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.247 
  • R-Value Observed: 0.250 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 175.749α = 90
b = 33.604β = 101.15
c = 74.474γ = 90
Software Package:
Software NamePurpose
Aimlessdata scaling
autoPROCdata reduction
PHASERphasing
PHENIXrefinement

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesS10 OD020068

Revision History  (Full details and data files)

  • Version 1.0: 2024-08-21
    Type: Initial release
  • Version 1.1: 2024-08-28
    Changes: Database references