This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This domain is characteristic of cilia- and flagella-associated protein 20 (CFA20). CFA20 is a cilium- and flagellum-specific protein that plays a role in axonemal structure organisation and motility [1,2]. In Chlamydomonas reinhardtii, it stabilises ...
This domain is characteristic of cilia- and flagella-associated protein 20 (CFA20). CFA20 is a cilium- and flagellum-specific protein that plays a role in axonemal structure organisation and motility [1,2]. In Chlamydomonas reinhardtii, it stabilises outer doublet microtubules (DMTs) of the axoneme and may work as a scaffold for intratubular proteins, such as tektin and PACRG, to produce the beak structures in DMT1 [2,3]. Other proteins contain a domain with homology to CFA20. WDR90/POC16 contains such a domain in its N terminus, followed by a large C-terminal domain with multiple WD40 repeats [2]. This domain is also present in the N terminus of uncharacterised protein C3orf67.
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the ...
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the DM10 domain [1,2], and in uncharacterised proteins including Rib72 from Chlamydomonas and EF-hand domain-containing protein 1/EF-hand domain-containing family member C2 (EFHC1/2) from mammals, which contain multiple copies of DM10 domains. In Chlamydomonas, and possibly mammals, DM10 domain-containing proteins are tightly bound to the flagellar doublet microtubules. This suggests that DM10 domains might act as flagellar NDK regulatory modules or as units specifically involved in axonemal targeting or assembly [3,4]. This domain have a PH-like fold which includes seven beta strands, with a short 3-4 residue helix after the first strand, and a more extended alpha helical region at the C terminus [2,3].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is pro ...
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions [2]. This family also includes Swiss:Q9Y2Q5 Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus Swiss:Q50883, a protein involved in gliding motility [4]. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role.
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is pro ...
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions [2]. This family also includes Swiss:Q9Y2Q5 Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus Swiss:Q50883, a protein involved in gliding motility [4]. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role.
The BLUF domain has been shown to bind FAD in the AppA protein (Swiss:Q53119). AppA is involved in the repression of photosynthesis genes in response to blue-light.
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the ...
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the DM10 domain [1,2], and in uncharacterised proteins including Rib72 from Chlamydomonas and EF-hand domain-containing protein 1/EF-hand domain-containing family member C2 (EFHC1/2) from mammals, which contain multiple copies of DM10 domains. In Chlamydomonas, and possibly mammals, DM10 domain-containing proteins are tightly bound to the flagellar doublet microtubules. This suggests that DM10 domains might act as flagellar NDK regulatory modules or as units specifically involved in axonemal targeting or assembly [3,4]. This domain have a PH-like fold which includes seven beta strands, with a short 3-4 residue helix after the first strand, and a more extended alpha helical region at the C terminus [2,3].
NYD-SP28 is expressed in a development-dependent manner, localised in spermatogenic cell cytoplams and human spermatozoa tail. It is post-translationally modified during sperm capacitation and ultimately contributes to the success of fertilisation [ ...
NYD-SP28 is expressed in a development-dependent manner, localised in spermatogenic cell cytoplams and human spermatozoa tail. It is post-translationally modified during sperm capacitation and ultimately contributes to the success of fertilisation [1]. This short region is found at the very C-terminus of family members of family NYD-SP28, Pfam:PF14772.
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the ...
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the DM10 domain [1,2], and in uncharacterised proteins including Rib72 from Chlamydomonas and EF-hand domain-containing protein 1/EF-hand domain-containing family member C2 (EFHC1/2) from mammals, which contain multiple copies of DM10 domains. In Chlamydomonas, and possibly mammals, DM10 domain-containing proteins are tightly bound to the flagellar doublet microtubules. This suggests that DM10 domains might act as flagellar NDK regulatory modules or as units specifically involved in axonemal targeting or assembly [3,4]. This domain have a PH-like fold which includes seven beta strands, with a short 3-4 residue helix after the first strand, and a more extended alpha helical region at the C terminus [2,3].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after ...
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions [2]. Structural analysis of PDB:1nlt shows that PF00684 is nested within this DnaJ C-terminal region [3].
This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors such as Swiss:O00264 [1,2]. Many members of this subfamily are membrane a ...
This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors such as Swiss:O00264 [1,2]. Many members of this subfamily are membrane anchored by an N-terminal transmembrane alpha helix. This family also includes a domain in some chitin synthases. There is no known ligand for this domain in the chitin synthases.
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
This domain is found in Cilia- and flagella-associated protein 58 (CFAP58) and related eukaryotic proteins. The human CFAP58 protein has an essential role in the assembly and organisation of the sperm flagellar axoneme [1]. This domain forms a parall ...
This domain is found in Cilia- and flagella-associated protein 58 (CFAP58) and related eukaryotic proteins. The human CFAP58 protein has an essential role in the assembly and organisation of the sperm flagellar axoneme [1]. This domain forms a parallel coiled coil that in the C. reinhardtii axonemal structure lays on the doublet microtubule surface and interacts with the N terminus of the MIA coiled coil [2].
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
Dyneins are microtubule-based AAA(+) motor complexes that power ciliary beating, cell division, cell migration and intracellular transport and comprise cytoplasmic and axonemal isoforms. They consist of a motor domain that contains a ring-shaped head ...
Dyneins are microtubule-based AAA(+) motor complexes that power ciliary beating, cell division, cell migration and intracellular transport and comprise cytoplasmic and axonemal isoforms. They consist of a motor domain that contains a ring-shaped head with six AAA-domains, a coiled-coil stalk with a microtubule binding domain (MTBD) and a linker [1-5] This entry represents the lid domain found at the C-terminal of the third AAA+ ATPase domain in dyneins [1-5].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydr ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the third nucleotide binding sites in the dynein motor. However, AAA3 has lost the catalytic residues necessary for ATP hydrolysis (the Walker B glutamate, the arginine finger, sensor-I and sensor-II motifs) [1].
Hydrolytic ATP binding site of dynein motor region
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities: AAA1-AAA6) [1]. This is the first site (out of four nucleotide binding sites in the dynein motor) where the movement depends on ATP hydrolysis [2]. When this site is nucleotide free or bound to ADP, the microtubule binding domain (MTBD) binds to the microtubule and the linker adopts the straight post-power-stroke conformation. Upon ATP binding and hydrolysis, the MTBD detaches from the microtubule and the linker is primed into the pre-power-stroke conformation. Dynein's AAA+ domains are each divided into an alpha/beta large subdomain designated with an L and and alpha small subdomains designated with an S. This is the AAA1 large (AAA1L) subdomain with the accompanying small subdomain (AAA1S). AAA1L, AAA1S and AAA2L enclose ADP.vanadate (ADP.Vi, ATP-hydrolysis transition state analogue). The AAA1L sensor-I loop, which varies in position depending on dynein's nucleotide state, swings in to contact AAA2L forming the important AAA1 nucleotide-binding site [1].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the fifth AAA+ domain subdomain AAA5S. Structural analysis reveal that it is the coiled-coil buttress interface. The relative movement of AAA5S together with the stalk (AAA4S), is coupled to rearrangements in the AAA+ ring. Closure of the AAA1 site and the rigid body movement of AAA2-AAA4 force the AAA4/AAA5 interface to close and the AAA6L subdomain to rotate towards the ring centre. The AAA5S subdomain rotates as a unit together with AAA6L, and this movement pulls the buttress relative to the stalk [1].
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading ove ...
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading over the AAA1, AAA5 and AAA6 domain [3].
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D4 ATP-binding region of the motor [1].
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This family is the region between D4 and D5 and is the two predicted alpha-helical coiled coil segments that form the stalk supporting the ATP-sensitive microtubule binding component [1].
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved i ...
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved in cilia and flagella movement. The dynein subunit consists of at least two heavy chains and a number of intermediate and light chains [1]. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This C-terminal domain carries the D6 region of the dynein motor where the P-loop has been lost in evolution but the general structure of a potential ATP binding site appears to be retained [2].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydr ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the third nucleotide binding sites in the dynein motor. However, AAA3 has lost the catalytic residues necessary for ATP hydrolysis (the Walker B glutamate, the arginine finger, sensor-I and sensor-II motifs) [1].
Hydrolytic ATP binding site of dynein motor region
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities: AAA1-AAA6) [1]. This is the first site (out of four nucleotide binding sites in the dynein motor) where the movement depends on ATP hydrolysis [2]. When this site is nucleotide free or bound to ADP, the microtubule binding domain (MTBD) binds to the microtubule and the linker adopts the straight post-power-stroke conformation. Upon ATP binding and hydrolysis, the MTBD detaches from the microtubule and the linker is primed into the pre-power-stroke conformation. Dynein's AAA+ domains are each divided into an alpha/beta large subdomain designated with an L and and alpha small subdomains designated with an S. This is the AAA1 large (AAA1L) subdomain with the accompanying small subdomain (AAA1S). AAA1L, AAA1S and AAA2L enclose ADP.vanadate (ADP.Vi, ATP-hydrolysis transition state analogue). The AAA1L sensor-I loop, which varies in position depending on dynein's nucleotide state, swings in to contact AAA2L forming the important AAA1 nucleotide-binding site [1].
Cilia- and flagella-associated protein 61, N-terminal domain
This entry represents the N-terminal domain of proteins described as cilia- and flagella-associated protein. Proteins containing this domain includes FAP61 from Chlamydomonas reinhardtii. FAP61 is part of the calmodulin and spoke-associated complex ( ...
This entry represents the N-terminal domain of proteins described as cilia- and flagella-associated protein. Proteins containing this domain includes FAP61 from Chlamydomonas reinhardtii. FAP61 is part of the calmodulin and spoke-associated complex (CSC) required for wild-type motility and for the stable assembly of a subset of radial spokes in motile cilia [1].
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the ...
This entry represents the DM10 domain, which consists of approximately 105 residues whose function is unknown. It has been identified in nucleoside diphosphate kinases, namely Nucleoside diphosphate kinase 7 (NDK7), which contain a single copy of the DM10 domain [1,2], and in uncharacterised proteins including Rib72 from Chlamydomonas and EF-hand domain-containing protein 1/EF-hand domain-containing family member C2 (EFHC1/2) from mammals, which contain multiple copies of DM10 domains. In Chlamydomonas, and possibly mammals, DM10 domain-containing proteins are tightly bound to the flagellar doublet microtubules. This suggests that DM10 domains might act as flagellar NDK regulatory modules or as units specifically involved in axonemal targeting or assembly [3,4]. This domain have a PH-like fold which includes seven beta strands, with a short 3-4 residue helix after the first strand, and a more extended alpha helical region at the C terminus [2,3].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are conf ...
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are confirmed as DnaJ containing domains from literature [2].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading ove ...
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading over the AAA1, AAA5 and AAA6 domain [3].
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This family is the region between D4 and D5 and is the two predicted alpha-helical coiled coil segments that form the stalk supporting the ATP-sensitive microtubule binding component [1].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydr ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the third nucleotide binding sites in the dynein motor. However, AAA3 has lost the catalytic residues necessary for ATP hydrolysis (the Walker B glutamate, the arginine finger, sensor-I and sensor-II motifs) [1].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
Hydrolytic ATP binding site of dynein motor region
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities: AAA1-AAA6) [1]. This is the first site (out of four nucleotide binding sites in the dynein motor) where the movement depends on ATP hydrolysis [2]. When this site is nucleotide free or bound to ADP, the microtubule binding domain (MTBD) binds to the microtubule and the linker adopts the straight post-power-stroke conformation. Upon ATP binding and hydrolysis, the MTBD detaches from the microtubule and the linker is primed into the pre-power-stroke conformation. Dynein's AAA+ domains are each divided into an alpha/beta large subdomain designated with an L and and alpha small subdomains designated with an S. This is the AAA1 large (AAA1L) subdomain with the accompanying small subdomain (AAA1S). AAA1L, AAA1S and AAA2L enclose ADP.vanadate (ADP.Vi, ATP-hydrolysis transition state analogue). The AAA1L sensor-I loop, which varies in position depending on dynein's nucleotide state, swings in to contact AAA2L forming the important AAA1 nucleotide-binding site [1].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the fifth AAA+ domain subdomain AAA5S. Structural analysis reveal that it is the coiled-coil buttress interface. The relative movement of AAA5S together with the stalk (AAA4S), is coupled to rearrangements in the AAA+ ring. Closure of the AAA1 site and the rigid body movement of AAA2-AAA4 force the AAA4/AAA5 interface to close and the AAA6L subdomain to rotate towards the ring centre. The AAA5S subdomain rotates as a unit together with AAA6L, and this movement pulls the buttress relative to the stalk [1].
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D4 ATP-binding region of the motor [1].
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved i ...
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved in cilia and flagella movement. The dynein subunit consists of at least two heavy chains and a number of intermediate and light chains [1]. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This C-terminal domain carries the D6 region of the dynein motor where the P-loop has been lost in evolution but the general structure of a potential ATP binding site appears to be retained [2].
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
This domain is characteristic of cilia- and flagella-associated protein 20 (CFA20). CFA20 is a cilium- and flagellum-specific protein that plays a role in axonemal structure organisation and motility [1,2]. In Chlamydomonas reinhardtii, it stabilises ...
This domain is characteristic of cilia- and flagella-associated protein 20 (CFA20). CFA20 is a cilium- and flagellum-specific protein that plays a role in axonemal structure organisation and motility [1,2]. In Chlamydomonas reinhardtii, it stabilises outer doublet microtubules (DMTs) of the axoneme and may work as a scaffold for intratubular proteins, such as tektin and PACRG, to produce the beak structures in DMT1 [2,3]. Other proteins contain a domain with homology to CFA20. WDR90/POC16 contains such a domain in its N terminus, followed by a large C-terminal domain with multiple WD40 repeats [2]. This domain is also present in the N terminus of uncharacterised protein C3orf67.
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is pro ...
This family includes proteins that are about 100 amino acids long and have been shown to be related [3]. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions [2]. This family also includes Swiss:Q9Y2Q5 Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus Swiss:Q50883, a protein involved in gliding motility [4]. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role.
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This domain, previously know as DUF6872, is found in Outer dynein arm-docking complex subunit 1 (ODAD1, CCDC114) from humans and similar eukaryotic proteins. In mammals, CCDC114 forms a hetero-coiled coil with ODAD1/CCDC151 within the A07/A08 interpr ...
This domain, previously know as DUF6872, is found in Outer dynein arm-docking complex subunit 1 (ODAD1, CCDC114) from humans and similar eukaryotic proteins. In mammals, CCDC114 forms a hetero-coiled coil with ODAD1/CCDC151 within the A07/A08 interprotofilament cleft, analogous to the DC1/2 coiled coil of the trimeric ODA-DC observed in C. reinhardtii axoneme [1,2]. DC2 is a homolog of the human ODAD1/CCDC151 and in C.reinhardtii it is a part of the ODA-DC that consists of three proteins: DC1, DC2, and DC3. The N-terminal halves of DC1 and DC2 form a microtubule-bound heteromeric coiled-coil [1,3].
This family consists of a domain that has an immunoglobulin like fold. These domains are found in cell surface receptors such as Met and Ron as well as in intracellular transcription factors where it is involved in DNA binding. CAUTION: This family d ...
This family consists of a domain that has an immunoglobulin like fold. These domains are found in cell surface receptors such as Met and Ron as well as in intracellular transcription factors where it is involved in DNA binding. CAUTION: This family does not currently recognise a significant number of members.
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading ove ...
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading over the AAA1, AAA5 and AAA6 domain [3].
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This family is the region between D4 and D5 and is the two predicted alpha-helical coiled coil segments that form the stalk supporting the ATP-sensitive microtubule binding component [1].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydr ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the third nucleotide binding sites in the dynein motor. However, AAA3 has lost the catalytic residues necessary for ATP hydrolysis (the Walker B glutamate, the arginine finger, sensor-I and sensor-II motifs) [1].
Hydrolytic ATP binding site of dynein motor region
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities: AAA1-AAA6) [1]. This is the first site (out of four nucleotide binding sites in the dynein motor) where the movement depends on ATP hydrolysis [2]. When this site is nucleotide free or bound to ADP, the microtubule binding domain (MTBD) binds to the microtubule and the linker adopts the straight post-power-stroke conformation. Upon ATP binding and hydrolysis, the MTBD detaches from the microtubule and the linker is primed into the pre-power-stroke conformation. Dynein's AAA+ domains are each divided into an alpha/beta large subdomain designated with an L and and alpha small subdomains designated with an S. This is the AAA1 large (AAA1L) subdomain with the accompanying small subdomain (AAA1S). AAA1L, AAA1S and AAA2L enclose ADP.vanadate (ADP.Vi, ATP-hydrolysis transition state analogue). The AAA1L sensor-I loop, which varies in position depending on dynein's nucleotide state, swings in to contact AAA2L forming the important AAA1 nucleotide-binding site [1].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the fifth AAA+ domain subdomain AAA5S. Structural analysis reveal that it is the coiled-coil buttress interface. The relative movement of AAA5S together with the stalk (AAA4S), is coupled to rearrangements in the AAA+ ring. Closure of the AAA1 site and the rigid body movement of AAA2-AAA4 force the AAA4/AAA5 interface to close and the AAA6L subdomain to rotate towards the ring centre. The AAA5S subdomain rotates as a unit together with AAA6L, and this movement pulls the buttress relative to the stalk [1].
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D4 ATP-binding region of the motor [1].
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved i ...
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved in cilia and flagella movement. The dynein subunit consists of at least two heavy chains and a number of intermediate and light chains [1]. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This C-terminal domain carries the D6 region of the dynein motor where the P-loop has been lost in evolution but the general structure of a potential ATP binding site appears to be retained [2].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydr ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliophathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the third nucleotide binding sites in the dynein motor. However, AAA3 has lost the catalytic residues necessary for ATP hydrolysis (the Walker B glutamate, the arginine finger, sensor-I and sensor-II motifs) [1].
Hydrolytic ATP binding site of dynein motor region
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities: AAA1-AAA6) [1]. This is the first site (out of four nucleotide binding sites in the dynein motor) where the movement depends on ATP hydrolysis [2]. When this site is nucleotide free or bound to ADP, the microtubule binding domain (MTBD) binds to the microtubule and the linker adopts the straight post-power-stroke conformation. Upon ATP binding and hydrolysis, the MTBD detaches from the microtubule and the linker is primed into the pre-power-stroke conformation. Dynein's AAA+ domains are each divided into an alpha/beta large subdomain designated with an L and and alpha small subdomains designated with an S. This is the AAA1 large (AAA1L) subdomain with the accompanying small subdomain (AAA1S). AAA1L, AAA1S and AAA2L enclose ADP.vanadate (ADP.Vi, ATP-hydrolysis transition state analogue). The AAA1L sensor-I loop, which varies in position depending on dynein's nucleotide state, swings in to contact AAA2L forming the important AAA1 nucleotide-binding site [1].
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydro ...
This domain is found in human cytoplasmic dynein-2 proteins. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Structural analysis reveal that the motor's ring consists of six AAA+ domains (ATPases associated with various cellular activities (AAA1-AAA6). This is the fifth AAA+ domain subdomain AAA5S. Structural analysis reveal that it is the coiled-coil buttress interface. The relative movement of AAA5S together with the stalk (AAA4S), is coupled to rearrangements in the AAA+ ring. Closure of the AAA1 site and the rigid body movement of AAA2-AAA4 force the AAA4/AAA5 interface to close and the AAA6L subdomain to rotate towards the ring centre. The AAA5S subdomain rotates as a unit together with AAA6L, and this movement pulls the buttress relative to the stalk [1].
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading ove ...
This family represents the C-terminal domain of dynein heavy chain. This domain is a complex structure comprising six alpha-helices and an incomplete six-stranded antiparallel beta-barrel. The shape of this domain is distinctively flat, spreading over the AAA1, AAA5 and AAA6 domain [3].
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D4 ATP-binding region of the motor [1].
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures describ ...
the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This family is the region between D4 and D5 and is the two predicted alpha-helical coiled coil segments that form the stalk supporting the ATP-sensitive microtubule binding component [1].
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved i ...
This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved in cilia and flagella movement. The dynein subunit consists of at least two heavy chains and a number of intermediate and light chains [1]. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This C-terminal domain carries the D6 region of the dynein motor where the P-loop has been lost in evolution but the general structure of a potential ATP binding site appears to be retained [2].
Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise.
This domain, previously know as DUF6872, is found in Outer dynein arm-docking complex subunit 1 (ODAD1, CCDC114) from humans and similar eukaryotic proteins. In mammals, CCDC114 forms a hetero-coiled coil with ODAD1/CCDC151 within the A07/A08 interpr ...
This domain, previously know as DUF6872, is found in Outer dynein arm-docking complex subunit 1 (ODAD1, CCDC114) from humans and similar eukaryotic proteins. In mammals, CCDC114 forms a hetero-coiled coil with ODAD1/CCDC151 within the A07/A08 interprotofilament cleft, analogous to the DC1/2 coiled coil of the trimeric ODA-DC observed in C. reinhardtii axoneme [1,2]. DC2 is a homolog of the human ODAD1/CCDC151 and in C.reinhardtii it is a part of the ODA-DC that consists of three proteins: DC1, DC2, and DC3. The N-terminal halves of DC1 and DC2 form a microtubule-bound heteromeric coiled-coil [1,3].
Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond pr ...
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond preceding proline (the peptidyl-prolyl bond) is stabilised in the cis conformation. Mammalian cyclophilin A (CypA) is a major cellular target for the immunosuppressive drug cyclosporin A (CsA). Other roles for cyclophilins may include chaperone and cell signalling function [1].
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after ...
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions [2]. Structural analysis of PDB:1nlt shows that PF00684 is nested within this DnaJ C-terminal region [3].
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after ...
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions [2]. Structural analysis of PDB:1nlt shows that PF00684 is nested within this DnaJ C-terminal region [3].
This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors such as Swiss:O00264 [1,2]. Many members of this subfamily are membrane a ...
This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors such as Swiss:O00264 [1,2]. Many members of this subfamily are membrane anchored by an N-terminal transmembrane alpha helix. This family also includes a domain in some chitin synthases. There is no known ligand for this domain in the chitin synthases.
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are conf ...
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are confirmed as DnaJ containing domains from literature [2].
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ...
This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules.
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tub ...
This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family).
Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond pr ...
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond preceding proline (the peptidyl-prolyl bond) is stabilised in the cis conformation. Mammalian cyclophilin A (CypA) is a major cellular target for the immunosuppressive drug cyclosporin A (CsA). Other roles for cyclophilins may include chaperone and cell signalling function [1].
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are conf ...
DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are confirmed as DnaJ containing domains from literature [2].
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after ...
This family consists of the C terminal region of the DnaJ protein. It is always found associated with Pfam:PF00226 and Pfam:PF00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions [2]. Structural analysis of PDB:1nlt shows that PF00684 is nested within this DnaJ C-terminal region [3].