7WYO

Structure of the EV71 3Cpro with 338 inhibitor


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.184 
  • R-Value Observed: 0.184 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease.

Qin, B.Craven, G.B.Hou, P.Chesti, J.Lu, X.Child, E.S.Morgan, R.M.L.Niu, W.Zhao, L.Armstrong, A.Mann, D.J.Cui, S.

(2022) Acta Pharm Sin B 12: 3924-3933

  • DOI: https://doi.org/10.1016/j.apsb.2022.06.002
  • Primary Citation of Related Structures:  
    7WYL, 7WYM, 7WYO, 7WYP

  • PubMed Abstract: 

    RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins. Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine, offering the opportunity to inhibit these enzymes with electrophilic small molecules. Here we describe the successful application of quantitative irreversible tethering (qIT) to identify acrylamide fragments that target the active site cysteine of the 3C protease (3C pro ) of Enterovirus 71, the causative agent of hand, foot and mouth disease in humans, altering the substrate binding region. Further, we re-purpose these hits towards the main protease (M pro ) of SARS-CoV-2 which shares the 3C-like fold and a similar active site. The hit fragments covalently link to the catalytic cysteine of M pro to inhibit its activity. We demonstrate that targeting the active site cysteine of M pro can have profound allosteric effects, distorting secondary structures to disrupt the active dimeric unit.


  • Organizational Affiliation

    NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
3C protein
A, B
187Enterovirus A71Mutation(s): 1 
UniProt
Find proteins for E7E815 (Human enterovirus 71)
Explore E7E815 
Go to UniProtKB:  E7E815
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupE7E815
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
G7F (Subject of Investigation/LOI)
Query on G7F

Download Ideal Coordinates CCD File 
C [auth A]N-methyl-N-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylmethyl)prop-2-enamide
C12 H16 N2 O S
YJZOYCOTGFHVFV-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.184 
  • R-Value Observed: 0.184 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 59.721α = 90
b = 70.697β = 90
c = 85.394γ = 90
Software Package:
Software NamePurpose
HKL-2000data scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Natural Science Foundation of China (NSFC)China81772207

Revision History  (Full details and data files)

  • Version 1.0: 2022-06-22
    Type: Initial release
  • Version 1.1: 2022-06-29
    Changes: Database references
  • Version 1.2: 2022-10-12
    Changes: Database references
  • Version 1.3: 2023-11-29
    Changes: Data collection, Refinement description