6GEF

X-ray structure of the Yersinia pseudotuberculosis ATPase DotB


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.255 
  • R-Value Observed: 0.257 

Starting Models: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

X-ray crystal structures of the type IVb secretion system DotB ATPases.

Prevost, M.S.Waksman, G.

(2018) Protein Sci 27: 1464-1475

  • DOI: https://doi.org/10.1002/pro.3439
  • Primary Citation of Related Structures:  
    6GEB, 6GEF

  • PubMed Abstract: 

    Human infections by the intracellular bacterial pathogen Legionella pneumophila result in a severe form of pneumonia, the Legionnaire's disease. L. pneumophila utilizes a Type IVb secretion (T4bS) system termed "dot/icm" to secrete protein effectors to the host cytoplasm. The dot/icm system is powered at least in part by a functionally critical AAA+ ATPase, a protein called DotB, thought to belong to the VirB11 family of proteins. Here we present the crystal structure of DotB at 3.19 Å resolution, in its hexameric form. We observe that DotB is in fact a structural intermediate between VirB11 and PilT family proteins, with a PAS-like N-terminal domain coupled to a RecA-like C-terminal domain. It also shares critical structural elements only found in PilT. The structure also reveals two conformers, termed α and β, with an αβαβαβ configuration. The existence of α and β conformers in this class of proteins was confirmed by solving the structure of DotB from another bacterial pathogen, Yersinia, where, intriguingly, we observed an ααβααβ configuration. The two conformers co-exist regardless of the nucleotide-bound states of the proteins. Our investigation therefore reveals that these ATPases can adopt a wider range of conformational states than was known before, shedding new light on the extraordinary spectrum of conformations these ATPases can access to carry out their function. Overall, the structure of DotB provides a template for further rational drug design to develop more specific antibiotics to tackle Legionnaire's disease. PDB Code(s): Will; be; provided.


  • Organizational Affiliation

    Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Type IV secretion system protein DotB
A, B, C, D, E
402Yersinia pseudotuberculosis IP 31758Mutation(s): 0 
Gene Names: YpsIP31758_B0110
UniProt
Find proteins for A0A0U1QTI9 (Yersinia pseudotuberculosis serotype O:1b (strain IP 31758))
Explore A0A0U1QTI9 
Go to UniProtKB:  A0A0U1QTI9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupA0A0U1QTI9
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.255 
  • R-Value Observed: 0.257 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 83.04α = 103.9
b = 93.56β = 101.98
c = 109.92γ = 99.94
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
European Research CouncilUnited Kingdom321630

Revision History  (Full details and data files)

  • Version 1.0: 2018-05-30
    Type: Initial release
  • Version 1.1: 2018-10-03
    Changes: Data collection, Database references
  • Version 1.2: 2024-01-17
    Changes: Data collection, Database references, Refinement description