Crystallization and preliminary crystallographic analysis of human muscle phosphofructokinase, the main regulator of glycolysis.
Kloos, M., Bruser, A., Kirchberger, J., Schoneberg, T., Strater, N.(2014) Acta Crystallogr Sect F Struct Biol Cryst Commun 70: 578-582
- PubMed: 24817713 
- DOI: https://doi.org/10.1107/S2053230X14008723
- Primary Citation of Related Structures:  
4OMT - PubMed Abstract: 
Whereas the three-dimensional structure and the structural basis of the allosteric regulation of prokaryotic 6-phosphofructokinases (Pfks) have been studied in great detail, knowledge of the molecular basis of the allosteric behaviour of the far more complex mammalian Pfks is still very limited. The human muscle isozyme was expressed heterologously in yeast cells and purified using a five-step purification protocol. Protein crystals suitable for diffraction experiments were obtained by the vapour-diffusion method. The crystals belonged to space group P6222 and diffracted to 6.0 Å resolution. The 3.2 Å resolution structure of rabbit muscle Pfk (rmPfk) was placed into the asymmetric unit and optimized by rigid-body and group B-factor refinement. Interestingly, the tetrameric enzyme dissociated into a dimer, similar to the situation observed in the structure of rmPfk.
Organizational Affiliation: 
Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.