4O2E

A peptide complexed with HLA-B*3901


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.98 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.187 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

N alpha-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted n alpha-acetylpeptide presentation

Sun, M.Liu, J.Qi, J.Tefsen, B.Shi, Y.Yan, J.Gao, G.F.

(2014) J Immunol 192: 5509-5519

  • DOI: https://doi.org/10.4049/jimmunol.1400199
  • Primary Citation of Related Structures:  
    4O2C, 4O2E, 4O2F

  • PubMed Abstract: 

    As one of the most common posttranslational modifications (PTMs) of eukaryotic proteins, N(α)-terminal acetylation (Nt-acetylation) generates a class of N(α)-acetylpeptides that are known to be presented by MHC class I at the cell surface. Although such PTM plays a pivotal role in adjusting proteolysis, the molecular basis for the presentation and T cell recognition of N(α)-acetylpeptides remains largely unknown. In this study, we determined a high-resolution crystallographic structure of HLA (HLA)-B*3901 complexed with an N(α)-acetylpeptide derived from natural cellular processing, also in comparison with the unmodified-peptide complex. Unlike the α-amino-free P1 residues of unmodified peptide, of which the α-amino group inserts into pocket A of the Ag-binding groove, the N(α)-linked acetyl of the acetylated P1-Ser protrudes out of the groove for T cell recognition. Moreover, the Nt-acetylation not only alters the conformation of the peptide but also switches the residues in the α1-helix of HLA-B*3901, which may impact the T cell engagement. The thermostability measurements of complexes between N(α)-acetylpeptides and a series of MHC class I molecules derived from different species reveal reduced stability. Our findings provide the insight into the mode of N(α)-acetylpeptide-specific presentation by classical MHC class I molecules and shed light on the potential of acetylepitope-based immune intervene and vaccine development.


  • Organizational Affiliation

    School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HLA class I histocompatibility antigen, B-39 alpha chain
A, D
274Homo sapiensMutation(s): 0 
Gene Names: HLA-BHLAB
UniProt & NIH Common Fund Data Resources
Find proteins for P01889 (Homo sapiens)
Explore P01889 
Go to UniProtKB:  P01889
PHAROS:  P01889
GTEx:  ENSG00000234745 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01889
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Beta-2-microglobulin
B, E
99Homo sapiensMutation(s): 0 
Gene Names: B2MCDABP0092HDCMA22P
UniProt & NIH Common Fund Data Resources
Find proteins for P61769 (Homo sapiens)
Explore P61769 
Go to UniProtKB:  P61769
PHAROS:  P61769
GTEx:  ENSG00000166710 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP61769
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
Peptide from ATP-dependent RNA helicase DDX3X
C, F
9Homo sapiensMutation(s): 0 
EC: 3.6.4.13
UniProt & NIH Common Fund Data Resources
Find proteins for O00571 (Homo sapiens)
Explore O00571 
Go to UniProtKB:  O00571
PHAROS:  O00571
GTEx:  ENSG00000215301 
Entity Groups  
UniProt GroupO00571
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.98 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.187 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 79.939α = 90
b = 103.967β = 90
c = 122.424γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
PHASERphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-07-23
    Type: Initial release
  • Version 1.1: 2023-11-08
    Changes: Data collection, Database references, Refinement description
  • Version 1.2: 2024-10-30
    Changes: Structure summary