4AOQ

Cationic trypsin in complex with mutated Spinacia oleracea trypsin inhibitor III (SOTI-III) (F14A)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.167 
  • R-Value Observed: 0.169 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural Characterization of Spinacia Oleracea Trypsin Inhibitor III (Soti-III)

Glotzbach, B.Schmelz, S.Reinwarth, M.Christmann, A.Heinz, D.W.Kolmar, H.

(2013) Acta Crystallogr D Biol Crystallogr 69: 114

  • DOI: https://doi.org/10.1107/S0907444912043880
  • Primary Citation of Related Structures:  
    4AOQ, 4AOR

  • PubMed Abstract: 

    In recent decades, several canonical serine protease inhibitor families have been classified and characterized. In contrast to most trypsin inhibitors, those from garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) do not share sequence similarity and have been proposed to form the new Mirabilis serine protease inhibitor family. These 30-40-amino-acid inhibitors possess a defined disulfide-bridge topology and belong to the cystine-knot miniproteins (knottins). To date, no atomic structure of this inhibitor family has been solved. Here, the first structure of S. oleracea trypsin inhibitor III (SOTI-III), in complex with bovine pancreatic trypsin, is reported. The inhibitor was synthesized by solid-phase peptide synthesis on a multi-milligram scale and was assayed to test its inhibitory activity and binding properties. The structure confirmed the proposed cystine-bridge topology. The structural features of SOTI-III suggest that it belongs to a new canonical serine protease inhibitor family with promising properties for use in protein-engineering and medical applications.


  • Organizational Affiliation

    Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CATIONIC TRYPSIN
A, B, C
223Bos taurusMutation(s): 0 
EC: 3.4.21.4
UniProt
Find proteins for P00760 (Bos taurus)
Explore P00760 
Go to UniProtKB:  P00760
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00760
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
TRYPSIN INHIBITOR 3
D, E, F
37Spinacia oleraceaMutation(s): 1 
UniProt
Find proteins for P84781 (Spinacia oleracea)
Explore P84781 
Go to UniProtKB:  P84781
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP84781
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.167 
  • R-Value Observed: 0.169 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 48.51α = 90
b = 68.38β = 93.25
c = 109.79γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-01-09
    Type: Initial release
  • Version 1.1: 2013-01-16
    Changes: Database references
  • Version 1.2: 2019-05-08
    Changes: Data collection, Experimental preparation, Other
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description
  • Version 1.4: 2024-10-23
    Changes: Structure summary