3TB2

1-Cys peroxidoxin from Plasmodium Yoelli


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.168 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms.

Vedadi, M.Lew, J.Artz, J.D.Amani, M.Zhao, Y.Dong, A.Wasney, G.A.Gao, M.Hills, T.Brokx, S.Qiu, W.Sharma, S.Diassiti, A.Alam, Z.Melone, M.Mulichak, A.Wernimont, A.Bray, J.Loppnau, P.Plotnikova, O.Newberry, K.Sundararajan, E.Houston, S.Walker, J.Tempel, W.Bochkarev, A.Kozieradzki, I.Edwards, A.Arrowsmith, C.Roos, D.Kain, K.Hui, R.

(2007) Mol Biochem Parasitol 151: 100-110

  • DOI: https://doi.org/10.1016/j.molbiopara.2006.10.011
  • Primary Citation of Related Structures:  
    1TXJ, 1XCC, 1Y6Z, 1Z6G, 1Z7D, 1Z81, 1ZO2, 2A22, 2A4A, 2AIF, 2AMX, 2AQW, 2AV4, 2AWP, 2AYV, 2B71, 2BDD, 2F4Z, 2FDS, 2FFC, 2FO3, 2FU0, 2GHI, 2H1R, 2H2Y, 2H66, 2HJR, 2HTE, 2HVG, 3PGG, 3TB2

  • PubMed Abstract: 

    Parasites from the protozoan phylum Apicomplexa are responsible for diseases, such as malaria, toxoplasmosis and cryptosporidiosis, all of which have significantly higher rates of mortality and morbidity in economically underdeveloped regions of the world. Advances in vaccine development and drug discovery are urgently needed to control these diseases and can be facilitated by production of purified recombinant proteins from Apicomplexan genomes and determination of their 3D structures. To date, both heterologous expression and crystallization of Apicomplexan proteins have seen only limited success. In an effort to explore the effectiveness of producing and crystallizing proteins on a genome-scale using a standardized methodology, over 400 distinct Plasmodium falciparum target genes were chosen representing different cellular classes, along with select orthologues from four other Plasmodium species as well as Cryptosporidium parvum and Toxoplasma gondii. From a total of 1008 genes from the seven genomes, 304 (30.2%) produced purified soluble proteins and 97 (9.6%) crystallized, culminating in 36 crystal structures. These results demonstrate that, contrary to previous findings, a standardized platform using Escherichia coli can be effective for genome-scale production and crystallography of Apicomplexan proteins. Predictably, orthologous proteins from different Apicomplexan genomes behaved differently in expression, purification and crystallization, although the overall success rates of Plasmodium orthologues do not differ significantly. Their differences were effectively exploited to elevate the overall productivity to levels comparable to the most successful ongoing structural genomics projects: 229 of the 468 target genes produced purified soluble protein from one or more organisms, with 80 and 32 of the purified targets, respectively, leading to crystals and ultimately structures from one or more orthologues.


  • Organizational Affiliation

    Structural Genomics Consortium, U. of Toronto, 100 College St. Rm 522B, Toronto, Ont., Canada M5G 1L5.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
1-Cys peroxiredoxin
A, B, C, D
220Plasmodium yoeliiMutation(s): 0 
Gene Names: py04285
UniProt
Find proteins for Q86SB3 (Plasmodium yoelii)
Explore Q86SB3 
Go to UniProtKB:  Q86SB3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ86SB3
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
AA [auth D],
E [auth A],
F [auth A],
N [auth B],
S [auth C]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
GOL
Query on GOL

Download Ideal Coordinates CCD File 
BA [auth D],
G [auth A],
O [auth B],
T [auth C]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
EDO
Query on EDO

Download Ideal Coordinates CCD File 
CA [auth D]
DA [auth D]
EA [auth D]
FA [auth D]
GA [auth D]
CA [auth D],
DA [auth D],
EA [auth D],
FA [auth D],
GA [auth D],
H [auth A],
HA [auth D],
I [auth A],
J [auth A],
K [auth A],
L [auth A],
M [auth A],
P [auth B],
Q [auth B],
R [auth B],
U [auth C],
V [auth C],
W [auth C],
X [auth C],
Y [auth C],
Z [auth C]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
CSD
Query on CSD
A, B, C, D
L-PEPTIDE LINKINGC3 H7 N O4 SCYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.168 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 90.39α = 90
b = 156.842β = 90
c = 178.075γ = 90
Software Package:
Software NamePurpose
ADSCdata collection
PHASESphasing
BUSTERrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2011-10-19
    Type: Initial release
  • Version 1.1: 2018-01-31
    Changes: Experimental preparation
  • Version 1.2: 2024-10-30
    Changes: Data collection, Database references, Derived calculations, Structure summary