3NKB

A 1.9A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.92 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.217 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A 1.9 A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage.

Chen, J.H.Yajima, R.Chadalavada, D.M.Chase, E.Bevilacqua, P.C.Golden, B.L.

(2010) Biochemistry 49: 6508-6518

  • DOI: https://doi.org/10.1021/bi100670p
  • Primary Citation of Related Structures:  
    3NKB

  • PubMed Abstract: 

    The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2',3'-cyclic phosphate and 5'-hydroxyl termini. The active site nucleotide C75 has a pK(a) shifted >2 pH units toward neutrality and has been implicated as a general acid/base in the cleavage reaction. An active site Mg(2+) ion that helps activate the 2'-hydroxyl for nucleophilic attack has been characterized biochemically; however, this ion has not been visualized in any previous structures. To create a snapshot of the ribozyme in a state poised for catalysis, we have crystallized and determined the structure of the HDV ribozyme bound to an inhibitor RNA containing a deoxynucleotide at the cleavage site. This structure includes the wild-type C75 nucleotide and Mg(2+) ions, both of which are required for maximal ribozyme activity. This structure suggests that the position of C75 does not change during the cleavage reaction. A partially hydrated Mg(2+) ion is also found within the active site where it interacts with a newly resolved G.U reverse wobble. Although the inhibitor exhibits crystallographic disorder, we modeled the ribozyme-substrate complex using the conformation of the inhibitor strand observed in the hammerhead ribozyme. This model suggests that the pro-R(P) oxygen of the scissile phosphate and the 2'-hydroxyl nucleophile are inner-sphere ligands to the active site Mg(2+) ion. Thus, the HDV ribozyme may use a combination of metal ion Lewis acid and nucleobase general acid strategies to effect RNA cleavage.


  • Organizational Affiliation

    Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA/RNA (5'-D(*(DUR))-D(*GP*G)-R(P*CP*UP*UP*GP*CP*A)-3')9N/A
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by: 3D Structure
Entity ID: 2
MoleculeChains LengthOrganismImage
The hepatitis delta virus ribozyme64Homo sapiens
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download Ideal Coordinates CCD File 
C [auth B]
D [auth B]
E [auth B]
F [auth B]
G [auth B]
C [auth B],
D [auth B],
E [auth B],
F [auth B],
G [auth B],
H [auth B],
I [auth B],
J [auth B],
K [auth B],
L [auth B]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.92 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.217 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 64.837α = 90
b = 84.107β = 90
c = 102.02γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-2000data reduction
HKL-2000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-09-01
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description