3MZ6

Crystal structure of D101L Fe2+ HDAC8 complexed with M344


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function.

Dowling, D.P.Gattis, S.G.Fierke, C.A.Christianson, D.W.

(2010) Biochemistry 49: 5048-5056

  • DOI: https://doi.org/10.1021/bi1005046
  • Primary Citation of Related Structures:  
    3MZ3, 3MZ4, 3MZ6, 3MZ7

  • PubMed Abstract: 

    The metal-dependent histone deacetylases (HDACs) adopt an alpha/beta protein fold first identified in rat liver arginase. Despite insignificant overall amino acid sequence identity, these enzymes share a strictly conserved metal binding site with divergent metal specificity and stoichiometry. HDAC8, originally thought to be a Zn(2+)-metallohydrolase, exhibits increased activity with Co(2+) and Fe(2+) cofactors based on k(cat)/K(M) (Gantt, S. L., Gattis, S. G., and Fierke, C. A. (2006) Biochemistry 45, 6170-6178). Here, we report the first X-ray crystal structures of metallo-substituted HDAC8, Co(2+)-HDAC8, D101L Co(2+)-HDAC8, D101L Mn(2+)-HDAC8, and D101L Fe(2+)-HDAC8, each complexed with the inhibitor M344. Metal content of protein samples in solution is confirmed by inductively coupled plasma mass spectrometry. For the crystalline enzymes, peaks in Bijvoet difference Fourier maps calculated from X-ray diffraction data collected near the respective elemental absorption edges confirm metal substitution. Additional solution studies confirm incorporation of Cu(2+); Fe(3+) and Ni(2+) do not bind under conditions tested. The metal dependence of the substrate K(M) values and the K(i) values of hydroxamate inhibitors that chelate the active site metal are consistent with substrate-metal coordination in the precatalytic Michaelis complex that enhances catalysis. Additionally, although HDAC8 binds Zn(2+) nearly 10(6)-fold more tightly than Fe(2+), the affinities for both metal ions are comparable to the readily exchangeable metal concentrations estimated in living cells, suggesting that HDAC8 could bind either or both Fe(2+) or Zn(2+) in vivo.


  • Organizational Affiliation

    Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Histone deacetylase 8389Homo sapiensMutation(s): 1 
Gene Names: HDAC8
EC: 3.5.1.98
UniProt & NIH Common Fund Data Resources
Find proteins for Q9BY41 (Homo sapiens)
Go to UniProtKB:  Q9BY41
PHAROS:  Q9BY41
GTEx:  ENSG00000147099 
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
B3N PDBBind:  3MZ6 Ki: 63 (nM) from 1 assay(s)
BindingDB:  3MZ6 IC50: min: 46, max: 1620 (nM) from 2 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 91.616α = 90
b = 87.561β = 90
c = 52.488γ = 90
Software Package:
Software NamePurpose
CBASSdata collection
PHASERphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-06-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2024-02-21
    Changes: Data collection, Database references, Derived calculations