3AW6

Crystal structure of tetragonal hen egg white lysozyme at 84.2% relative humidity


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.155 
  • R-Value Observed: 0.158 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

A few low-frequency normal modes predominantly contribute to conformational responses of hen egg white lysozyme in the tetragonal crystal to variations of molecular packing controlled by environmental humidity

Takayama, Y.Nakasako, M.

(2011) Biophys Chem 159: 237-246

  • DOI: https://doi.org/10.1016/j.bpc.2011.07.001
  • Primary Citation of Related Structures:  
    3AW6, 3AW7

  • PubMed Abstract: 

    The structures of proteins in crystals are fixed by molecular interactions with neighboring molecules, except in non-contacting flexible regions. Thus, it is difficult to imagine what conformational changes occur in solution. However, if molecular interactions can be changed by manipulating molecular packing in crystals, it may be possible to visualize conformational responses of proteins at atomic resolution by diffraction experiments. For this purpose, it is suitable to control the molecular packing in protein crystals by changing the volume of solvent channels through variation of the environmental relative humidity. Here, we studied conformational responses of hen egg white lysozyme (HEWL) in the tetragonal crystal by X-ray diffraction experiments using a humidity-control apparatus, which provided air flow of 20-98%rh at 298 K. First, we monitored the lattice parameters and crystalline order during dehydration and rehydration of HEWL crystal between 61 and 94%rh at 300 K. Then two crystal structures at a resolution of 2.1 Å using diffraction data obtained at 84.2 and 71.9%rh were determined to discuss the conformational responses of HEWL against the external perturbation induced by changes in molecular packing. The structure at 71.9%rh displayed a closure movement that was likely induced by the molecular contacts formed during dehydration and could be approximated by ten low-frequency normal modes for the crystal structure obtained at 84.2%rh. In addition, we observed reorganization of hydration structures at the molecular interfaces between symmetry neighbors. These findings suggest that humidity-controlled X-ray crystallography is an effective tool to investigate the responses of inherent intramolecular motions of proteins to external perturbations.


  • Organizational Affiliation

    Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kanagawa 223-8522, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lysozyme C129Gallus gallusMutation(s): 0 
EC: 3.2.1.17
UniProt
Find proteins for P00698 (Gallus gallus)
Explore P00698 
Go to UniProtKB:  P00698
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00698
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.155 
  • R-Value Observed: 0.158 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 79.484α = 90
b = 79.484β = 90
c = 37.886γ = 90
Software Package:
Software NamePurpose
CrystalCleardata collection
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-03-30
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2011-12-07
    Changes: Database references
  • Version 1.3: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.4: 2024-11-06
    Changes: Structure summary