2H67

NMR structure of human insulin mutant HIS-B5-ALA, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 40 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

A Conserved Histidine in Insulin Is Required for the Foldability of Human Proinsulin: Structure and function of an Alab5 analog.

Hua, Q.X.Liu, M.Hu, S.Q.Jia, W.Arvan, P.Weiss, M.A.

(2006) J Biol Chem 281: 24889-24899

  • DOI: https://doi.org/10.1074/jbc.M602617200
  • Primary Citation of Related Structures:  
    2H67

  • PubMed Abstract: 

    The insulins of eutherian mammals contain histidines at positions B5 and B10. The role of His(B10) is well defined: although not required in the mature hormone for receptor binding, in the islet beta cell this side chain functions in targeting proinsulin to glucose-regulated secretory granules and provides axial zincbinding sites in storage hexamers. In contrast, the role of His(B5) is less well understood. Here, we demonstrate that its substitution with Ala markedly impairs insulin chain combination in vitro and blocks the folding and secretion of human proinsulin in a transfected mammalian cell line. The structure and stability of an Ala(B5)-insulin analog were investigated in an engineered monomer (DKP-insulin). Despite its impaired foldability, the structure of the Ala(B5) analog retains a native-like T-state conformation. At the site of substitution, interchain nuclear Overhauser effects are observed between the methyl resonance of Ala(B5) and side chains in the A chain; these nuclear Overhauser effects resemble those characteristic of His(B5) in native insulin. Substantial receptor binding activity is retained (80 +/- 10% relative to the parent monomer). Although the thermodynamic stability of the Ala(B5) analog is decreased (DeltaDeltaG(u) = 1.7 +/- 0.1 kcal/mol), consistent with loss of His(B5)-related interchain packing and hydrogen bonds, control studies suggest that this decrement cannot account for its impaired foldability. We propose that nascent long-range interactions by His(B5) facilitate alignment of Cys(A7) and Cys(B7) in protein-folding intermediates; its conservation thus reflects mechanisms of oxidative folding rather than structure-function relationships in the native state.


  • Organizational Affiliation

    Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Insulin A chain21Homo sapiensMutation(s): 0 
Gene Names: INS
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Insulin B chain30Homo sapiensMutation(s): 4 
Gene Names: INS
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 40 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-07-18
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-10-20
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-11-13
    Changes: Data collection, Structure summary