1Y1I

hyuman formylglycine generating enzyme, reduced form


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.61 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.150 
  • R-Value Observed: 0.155 

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.

Dierks, T.Dickmanns, A.Preusser-Kunze, A.Schmidt, B.Mariappan, M.von Figura, K.Ficner, R.Rudolph, M.G.

(2005) Cell 121: 541-552

  • DOI: https://doi.org/10.1016/j.cell.2005.03.001
  • Primary Citation of Related Structures:  
    1Y1E, 1Y1F, 1Y1G, 1Y1H, 1Y1I, 1Y1J

  • PubMed Abstract: 

    Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.


  • Organizational Affiliation

    Department of Biochemistry II, University of Göttingen, D-37073 Göttingen, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
C-alpha-formyglycine-generating enzymeA [auth X]311Homo sapiensMutation(s): 0 
EC: 1.8.3.7
UniProt & NIH Common Fund Data Resources
Find proteins for Q8NBK3 (Homo sapiens)
Explore Q8NBK3 
Go to UniProtKB:  Q8NBK3
PHAROS:  Q8NBK3
GTEx:  ENSG00000144455 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8NBK3
Glycosylation
Glycosylation Sites: 1Go to GlyGen: Q8NBK3-1
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseB [auth A]2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.61 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.150 
  • R-Value Observed: 0.155 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61.633α = 90
b = 109.365β = 90
c = 43.364γ = 90
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-05-31
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Database references, Derived calculations, Structure summary
  • Version 2.1: 2024-11-06
    Changes: Data collection, Database references, Structure summary