1TMN | pdb_00001tmn

Binding of n-carboxymethyl dipeptide inhibitors to thermolysin determined by x-ray crystallography. a novel class of transition-state analogues for zinc peptidases


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 
    0.171 (Depositor), 0.160 (DCC) 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted 0ZNClick on this verticalbar to view details

This is version 2.1 of the entry. See complete history


Literature

Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases

Monzingo, A.F.Matthews, B.W.

(1984) Biochemistry 23: 5724-5729

  • DOI: https://doi.org/10.1021/bi00319a010
  • Primary Citation of Related Structures:  
    1TMN

  • PubMed Abstract: 

    The mode of binding of the specific thermolysin inhibitor N-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan (KI approximately 5 X 10(-8) M) [Maycock, A. L., DeSousa, D. M., Payne, L. G., ten Broeke, J., Wu, M. T., & Patchett, A. A. (1981) Biochem. Biophys. Res. Commun. 102, 963-969] has been determined by X-ray crystallography and refined to an R value of 17.1% at 1.9-A resolution. The inhibitor binds to thermolysin with both oxygens of the N-carboxymethyl group liganded to the zinc to give overall pentacoordination of the metal. The bidentate ligation of the inhibitor differs from the monodentate binding seen previously for carboxylate-zinc interactions in thermolysin and is closer to the bidentate geometry observed for the binding of hydroxamates [Holmes, M. A., & Matthews, B. W. (1981) Biochemistry 20, 6912-6920]. The geometry of the inhibitor and its interactions with the protein have a number of elements in common with the presumed transition state formed during peptide hydrolysis. The observed zinc ligation supports the previous suggestion that a pentacoordinate intermediate participates in the mechanism of catalysis. However, the alpha-amino nitrogen of the inhibitor is close to Glu-143, suggesting that this residue might accept a proton from an attacking water molecule (as proposed before) and subsequently donate this proton to the leaving nitrogen. By analogy with thermolysin, it is proposed that a related mechanism should be considered for peptide cleavage by carboxypeptidase A.(ABSTRACT TRUNCATED AT 250 WORDS)


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
THERMOLYSINA [auth E]316Bacillus thermoproteolyticusMutation(s): 0 
Gene Names: npr
EC: 3.4.24.27
UniProt
Find proteins for P00800 (Bacillus thermoproteolyticus)
Explore P00800 
Go to UniProtKB:  P00800
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00800
Sequence Annotations
Expand
  • Reference Sequence
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work:  0.171 (Depositor), 0.160 (DCC) 
Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 94.2α = 90
b = 94.2β = 90
c = 131.4γ = 120
Software Package:
Software NamePurpose
EREFrefinement
OSCTSTdata reduction
AGROVATA/ROTAVATEdata scaling
RICHARDSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted 0ZNClick on this verticalbar to view details

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1989-01-09
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Atomic model, Database references, Derived calculations, Non-polymer description, Structure summary, Version format compliance
  • Version 1.3: 2012-12-12
    Changes: Other
  • Version 1.4: 2017-11-29
    Changes: Derived calculations, Other
  • Version 2.0: 2022-11-23
    Type: Remediation
    Changes: Advisory, Atomic model, Data collection, Database references, Derived calculations, Other
  • Version 2.1: 2024-05-22
    Changes: Data collection