1TIN

THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF CUCURBITA MAXIMA TRYPSIN INHIBITOR-V DETERMINED BY NMR SPECTROSCOPY


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Three-dimensional solution structure of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.

Cai, M.Gong, Y.Kao, J.L.Krishnamoorthi, R.

(1995) Biochemistry 34: 5201-5211

  • DOI: https://doi.org/10.1021/bi00015a034
  • Primary Citation of Related Structures:  
    1TIN

  • PubMed Abstract: 

    The solution structure of Cucurbita maxima trypsin inhibitor-V (CMTI-V), which is also a specific inhibitor of the blood coagulation protein, factor XIIa, was determined by 1H NMR spectroscopy in combination with a distance-geometry and simulated annealing algorithm. Sequence-specific resonance assignments were made for all the main-chain and most of the side-chain hydrogens. Stereospecific assignments were also made for some of the beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens. The ring conformations of all six prolines in the inhibitor were determined on the basis of 1H-1H vicinal coupling constant patterns; most of the proline ring hydrogens were stereospecifically assigned on the basis of vicinal coupling constant and intraresidue nuclear Overhauser effect (NOE) patterns. Distance constraints were determined on the basis of NOEs between pairs of hydrogens. Dihedral angle constraints were determined from estimates of scalar coupling constants and intraresidue NOEs. On the basis of 727 interproton distance and 111 torsion angle constraints, which included backbone phi angles and side-chain chi 1, chi 2, chi 3, and chi 4 angles, 22 structures were calculated by a distance geometry algorithm and refined by energy minimization and simulated annealing methods. Both main-chain and side-chain atoms are well-defined, except for a loop region, two terminal residues, and some side-chain atoms located on the molecular surface. The average root mean squared deviation in the position for equivalent atoms between the 22 individual structures and the mean structure obtained by averaging their coordinates is 0.58 +/- 0.06 A for the main-chain atoms and 1.01 +/- 0.07 A for all the non-hydrogen atoms of residues 3-40 and 49-67. These structures were compared to the X-ray crystallographic structure of another protein of the same inhibitor family-chymotrypsin inhibitor-2 from barley seeds [CI-2; McPhalen, C. A., & James, M. N. G. (1987) Biochemistry 26, 261-269]. The main-chain folding patterns are highly similar for the two proteins, which possess 62% sequence differences. However, major differences are noted in the N- and C-terminal segments, which may be due to the presence of a disulfide bridge in CMTI-V, but not in CI-2.


  • Organizational Affiliation

    Department of Biochemistry, Kansas State University, Manhattan 66506, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TRYPSIN INHIBITOR V69Cucurbita maximaMutation(s): 0 
UniProt
Find proteins for P19873 (Cucurbita maxima)
Explore P19873 
Go to UniProtKB:  P19873
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19873
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-01-26
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other