1QLY

NMR Study of the SH3 Domain From Bruton's Tyrosine Kinase, 20 Structures


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: LOWEST ENERGY 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution Structure of the Human Btk SH3 Domain Complexed with a Proline-Rich Peptide from P120Cbl

Tzeng, S.R.Lou, Y.C.Pai, M.T.Chen, C.P.Chen, S.H.Cheng, J.W.

(2000) J Biomol NMR 16: 303

  • DOI: https://doi.org/10.1023/a:1008376624863
  • Primary Citation of Related Structures:  
    1QLY

  • PubMed Abstract: 

    X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B cell differentiation which incapacitates antibody production in XLA patients leading to, sometimes lethal, bacterial infections. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in one patient family. To understand the role of BTK in B cell development, we have determined the solution structure of BTK SH3 domain complexed with a proline-rich peptide from the protein product of c-cbl protooncogene (p120cbl). Like other SH3 domains, BTK SH3 domain consists of five beta-strands packed in two beta-sheets forming a beta-barrel-like structure. The rmsd calculated from the averaged coordinates for the BTK SH3 domain residues 218-271 and the p120cbl peptide residues 6-12 of the complex was 0.87 A (+/-0.16 A) for the backbone heavy atoms (N, C, and Calpha) and 1.64 A (+/-0.16 A) for all heavy atoms. Based on chemical shift changes and inter-molecular NOEs, we have found that the residues located in the RT loop, n-Src loop and helix-like loop between beta4 and beta5 of BTK SH3 domain are involved in ligand binding. We have also determined that the proline-rich peptide from p120cbl binds to BTK SH3 domain in a class I orientation. These results correlate well with our earlier observation that the truncated BTK SH3 domain (deletion of beta4, beta5 and the helix-like loop) exhibits weaker affinity for the p120cbl peptide. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context and hence the weaker binding. These results delineate the importance of the C-terminus in the binding of SH3 domains and also indicate that improper folding and the altered binding behavior of mutant BTK SH3 domain likely lead to XLA.


  • Organizational Affiliation

    Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TYROSINE-PROTEIN KINASE BTK58Homo sapiensMutation(s): 0 
EC: 2.7.1.112 (PDB Primary Data), 2.7.10.2 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for Q06187 (Homo sapiens)
Explore Q06187 
Go to UniProtKB:  Q06187
PHAROS:  Q06187
GTEx:  ENSG00000010671 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ06187
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: LOWEST ENERGY 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-12-14
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-05-15
    Changes: Data collection, Database references, Other