Structural origins of aminoglycoside specificity for prokaryotic ribosomes.
Lynch, S.R., Puglisi, J.D.(2001) J Mol Biol 306: 1037-1058
- PubMed: 11237617 
- DOI: https://doi.org/10.1006/jmbi.2000.4420
- Primary Citation of Related Structures:  
1FYP - PubMed Abstract: 
Aminoglycoside antibiotics, including paromomycin, neomycin and gentamicin, target a region of highly conserved nucleotides in the decoding region aminoacyl-tRNA site (A site) of 16 S rRNA on the 30 S subunit. Change of a single nucleotide, A1408 to G, reduces the affinity of many aminoglycosides for the ribosome; G1408 distinguishes between prokaryotic and eukaryotic ribosomes. The structures of a prokaryotic decoding region A-site oligonucleotide free in solution and bound to the aminoglycosides paromomycin and gentamicin C1a were determined previously. Here, the structure of a eukaryotic decoding region A-site oligonucleotide bound to paromomycin has been determined using NMR spectroscopy and compared to the prokaryotic A-site-paromomycin structure. A conformational change in three adenosine residues of an internal loop, critical for high-affinity antibiotic binding, was observed in the prokaryotic RNA-paromomycin complex in comparison to its free form. This conformational change is not observed in the eukaryotic RNA-paromomycin complex, disrupting the binding pocket for ring I of the antibiotic. The lack of the conformational change supports footprinting and titration calorimetry data that demonstrate approximately 25-50-fold weaker binding of paromomycin to the eukaryotic decoding-site oligonucleotide. Neomycin, which is much less active against Escherichia coli ribosomes with an A1408G mutation, binds non-specifically to the oligonucleotide. These results suggest that eukaryotic ribosomal RNA has a shallow binding pocket for aminoglycosides, which accommodates only certain antibiotics.
Organizational Affiliation: 
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.