1FI1

FhuA in complex with lipopolysaccharide and rifamycin CGP4832


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.233 
  • R-Value Observed: 0.233 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.2 of the entry. See complete history


Literature

Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.

Ferguson, A.D.Kodding, J.Walker, G.Bos, C.Coulton, J.W.Diederichs, K.Braun, V.Welte, W.

(2001) Structure 9: 707-716

  • DOI: https://doi.org/10.1016/s0969-2126(01)00631-1
  • Primary Citation of Related Structures:  
    1FI1

  • PubMed Abstract: 

    FhuA, an integral membrane protein of Escherichia coli, actively transports ferrichrome and the structurally related antibiotic albomycin across the outer membrane. The transport is coupled to the proton motive force, which energizes FhuA through the inner-membrane protein TonB. FhuA also transports the semisynthetic rifamycin derivative CGP 4832, although the chemical structure of this antibiotic differs markedly from that of ferric hydroxamates. X-ray crystallography revealed that rifamycin CGP 4832 occupies the same ligand binding site as ferrichrome and albomycin, thus demonstrating a surprising lack of selectivity. However, the binding of rifamycin CGP 4832 is deviant from the complexes of FhuA with hydroxamate-type ligands in that it does not result in the unwinding of the switch helix but only in its destabilization, as reflected by increased B factors. Unwinding of the switch helix is proposed to be required for efficient binding of TonB to FhuA and for coupling the proton motive force of the cytoplasmic membrane with energy-dependent ligand transport. The transport data from cells expressing mutant FhuA proteins indicated conserved structural and mechanistic requirements for the transport of both types of compounds. We conclude that the binding of rifamycin CGP 4832 destabilizes the switch helix and promotes the formation of a transport-competent FhuA-TonB complex, albeit with lower efficiency than ferrichrome. Active transport of this rifamycin derivative explains the 200-fold increase in potency as compared to rifamycin, which is not a FhuA-specific ligand and permeates across the cell envelope by passive diffusion only.


  • Organizational Affiliation

    Fakultät für Biologie, Universität Konstanz, D-78457, Konstanz, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FERRICHROME-IRON RECEPTOR707Escherichia coli K-12Mutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P06971 (Escherichia coli (strain K12))
Explore P06971 
Go to UniProtKB:  P06971
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06971
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-D-glucopyranose-(1-2)-alpha-D-glucopyranose-(1-3)-[alpha-D-galactopyranose-(1-6)]alpha-D-glucopyranose-(1-3)-[L-glycero-alpha-D-manno-heptopyranose-(1-7)]L-glycero-alpha-D-manno-heptopyranose-(1-3)-L-glycero-alpha-D-manno-heptopyranose-(1-5)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosonic acid-(2-4)]3-deoxy-alpha-D-manno-oct-2-ulopyranosonic acid-(2-6)-2-amino-2,3-dideoxy-alpha-D-glucoyranose-(1-6)-2-amino-2-deoxy-alpha-D-glucopyranose
B
11N/A
Glycosylation Resources
GlyTouCan:  G08252UR
GlyCosmos:  G08252UR
Small Molecules
Ligands 8 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
RIF
Query on RIF

Download Ideal Coordinates CCD File 
P [auth A]RIFAMYCIN CGP 4832
C49 H65 N3 O15
CHVBGOATCBIEAJ-XFPQHQHISA-N
FTT
Query on FTT

Download Ideal Coordinates CCD File 
C [auth A]
I [auth A]
J [auth A]
K [auth A]
L [auth A]
C [auth A],
I [auth A],
J [auth A],
K [auth A],
L [auth A],
M [auth A]
3-HYDROXY-TETRADECANOIC ACID
C14 H28 O3
ATRNZOYKSNPPBF-CYBMUJFWSA-N
DDQ
Query on DDQ

Download Ideal Coordinates CCD File 
Q [auth A]DECYLAMINE-N,N-DIMETHYL-N-OXIDE
C12 H27 N O
ZRKZFNZPJKEWPC-UHFFFAOYSA-N
DPO
Query on DPO

Download Ideal Coordinates CCD File 
N [auth A],
O [auth A]
DIPHOSPHATE
O7 P2
XPPKVPWEQAFLFU-UHFFFAOYSA-J
PO4
Query on PO4

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A]
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
NI
Query on NI

Download Ideal Coordinates CCD File 
F [auth A]NICKEL (II) ION
Ni
VEQPNABPJHWNSG-UHFFFAOYSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
H [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
NA
Query on NA

Download Ideal Coordinates CCD File 
G [auth A]SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.233 
  • R-Value Observed: 0.233 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 172.82α = 90
b = 172.82β = 90
c = 87.91γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
XDSdata reduction
CNSrefinement
XDSdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-08-29
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2012-06-20
    Changes: Non-polymer description
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2022-12-21
    Changes: Database references, Structure summary
  • Version 2.2: 2024-11-13
    Changes: Data collection, Structure summary