1ADZ

THE SOLUTION STRUCTURE OF THE SECOND KUNITZ DOMAIN OF TISSUE FACTOR PATHWAY INHIBITOR, NMR, 30 STRUCTURES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 300 
  • Conformers Submitted: 30 
  • Selection Criteria: LOWEST VALUE OF VARIABLE TARGET FUNCTION 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The second Kunitz domain of human tissue factor pathway inhibitor: cloning, structure determination and interaction with factor Xa.

Burgering, M.J.Orbons, L.P.van der Doelen, A.Mulders, J.Theunissen, H.J.Grootenhuis, P.D.Bode, W.Huber, R.Stubbs, M.T.

(1997) J Mol Biol 269: 395-407

  • DOI: https://doi.org/10.1006/jmbi.1997.1029
  • Primary Citation of Related Structures:  
    1ADZ, 1TFX

  • PubMed Abstract: 

    Tissue Factor Pathway Inhibitor (TFPI) is a 36 kDa glycoprotein that helps maintain haemostasis by inhibiting Factor Xa and the Factor VIIa/Tissue Factor (TF) complex. TFPI contains three tandemly linked Kunitz inhibitor domains, of which the second inhibits factor Xa. We have undertaken a multidisciplinary approach to study the structure and function of the second Kunitz domain of TFPI, with a view towards the rational design of factor Xa inhibitors. Amino acid residues 93 to 154 of the mature TFPI protein, corresponding to the second Kunitz domain (TFPI-kII), were expressed in Escherichia coli. The protein was purified to near homogeneity by ion exchange, hydrophobic interaction, and size exclusion chromatography, respectively. TFPI-kII is a potent factor Xa inhibitor with a Ki of 1.5 x 10(-10) M, a value that does not differ significantly from that of intact TFPI. The three-dimensional structure of TFPI-kII in aqueous solution was determined by 1H nuclear magnetic resonance spectroscopy (NMR). A set of 30 conformers was calculated with the program DIANA using 906 distance constraints derived from nuclear Overhauser effects and 23 dihedral angle constraints. This set, representing the solution structure of TFPI-kII, has an average root-mean-square deviation of 0.78 A for the backbone atoms and 1.38 A for all heavy atoms of residues 1 to 58. The structure of TFPI-kII has also been determined in complex with porcine trypsin using X-ray crystallographic techniques. The complex has been solved to a resolution of 2.6 A, with a final R-factor of 16.2%. Comparison of the NMR derived structure with that of TFPI-kII in complex with trypsin reveals little divergence of the two structures, with the exception of residue Tyr17. Superposition of the trypsin:TFPI-kII complex on factor Xa provides insights into macromolecular determinants for the inhibition of factor Xa. Complexation would require a degree of reorganisation of factor Xa residues, in particular of TyrF99, but also perhaps of the F148-loop. The interaction was further investigated using restrained molecular dynamics. Electrostatic interactions would appear to play a major role. The reorganisation of factor Xa is in contrast to the proposed factor Xa:TAP interaction, where TAP would bind to the "ground state" structure of factor Xa.


  • Organizational Affiliation

    Scientific Development Group, N.V. Organon, Oss, The Netherlands.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TISSUE FACTOR PATHWAY INHIBITOR71Homo sapiensMutation(s): 5 
UniProt & NIH Common Fund Data Resources
Find proteins for P10646 (Homo sapiens)
Explore P10646 
Go to UniProtKB:  P10646
PHAROS:  P10646
GTEx:  ENSG00000003436 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP10646
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 300 
  • Conformers Submitted: 30 
  • Selection Criteria: LOWEST VALUE OF VARIABLE TARGET FUNCTION 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-02-25
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Database references, Derived calculations, Other
  • Version 1.4: 2024-10-30
    Changes: Data collection, Structure summary