CENP-T is a family of vertebral kinetochore proteins that associates directly with CENP-W. The N-terminus of CENP-T proteins interacts directly with the Ndc80 complex in the outer kinetochore. Importantly, the CENP-T-W complex does not directly asso ...
CENP-T is a family of vertebral kinetochore proteins that associates directly with CENP-W. The N-terminus of CENP-T proteins interacts directly with the Ndc80 complex in the outer kinetochore. Importantly, the CENP-T-W complex does not directly associate with CENP-A, but with histone H3 in the centromere region. CENP-T and -W form a hetero-tetramer with CENP-S and -X and bind to a ~100 bp region of nucleosome-free DNA forming a nucleosome-like structure. The DNA-CENP-T-W-S-X complex is likely to be associated with histone H3-containing nucleosomes rather than with CENP-nucleosomes. This domain is the C-terminal histone fold domain of CENP-T, which associates with chromatin [2-3].
Zinc finger present in dystrophin, CBP/p300. ZZ in dystrophin binds calmodulin. Putative zinc finger; binding not yet shown. Four to six cysteine residues in its sequence are responsible for coordinating zinc ions, to reinforce the structure [2].
Histone acetylation is required in many cellular processes including transcription, DNA repair, and chromatin assembly. This family contains the fungal KAT11 protein (previously known as RTT109) which is required for H3K56 acetylation. Loss of KAT11 ...
Histone acetylation is required in many cellular processes including transcription, DNA repair, and chromatin assembly. This family contains the fungal KAT11 protein (previously known as RTT109) which is required for H3K56 acetylation. Loss of KAT11 results in the loss of H3K56 acetylation, both on bulk histone and on chromatin [1]. KAT11 and H3K56 acetylation appear to correlate with actively transcribed genes and associate with the elongating form of Pol II in yeast [1]. This family also incorporates the p300/CBP histone acetyltransferase domain which has different catalytic properties and cofactor regulation to KAT11 [3].
Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine [3].
CBP (CREB-binding protein) and p300 (also known as CREBBP or KAT3A and EP300 or KAT3B, respectively) are two histone acetyltransferases (HATs) that associate with and acetylate transcriptional regulators and chromatin. The catalytic core of animal CB ...
CBP (CREB-binding protein) and p300 (also known as CREBBP or KAT3A and EP300 or KAT3B, respectively) are two histone acetyltransferases (HATs) that associate with and acetylate transcriptional regulators and chromatin. The catalytic core of animal CBP-p300 contains a bromodomain, a CH2 region containing a discontinuous PHD domain interrupted by this RING domain, and a HAT domain. Bromodomain-RING-PHD forms a compact module in which the RING domain is juxtaposed with the HAT substrate-binding site. This RING domain contains only a single zinc ion-binding cluster instead of two; instead of a second zinc atom, a network of hydrophobic interactions stabilizes the domain. The RING domain has an inhibitory role. Disease mutations that disrupt RING attachment lead to upregulation of HAT activity. HAT regulation may require repositioning of the RING domain to facilitate access to an otherwise partially occluded HAT active site. Plant CBP-p300 type HATs lack a bromodomain whose role in the animal animal CBP-p300's is to bind acetylated histones; it has been suggested that these plant proteins may utilise a different domain or another bromodomain protein to perform this function [1]. This RING domain has also been referred to as DUF902.