superoxide dismutases (SODs) catalyse the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplas ...
superoxide dismutases (SODs) catalyse the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplasmic Cu/Zn SOD, and a mitochondrial Mn/Fe SOD. C-terminal domain is a mixed alpha/beta fold.
superoxide dismutases (SODs) catalyse the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplas ...
superoxide dismutases (SODs) catalyse the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplasmic Cu/Zn SOD, and a mitochondrial Mn/Fe SOD. C-terminal domain is a mixed alpha/beta fold.
AKAP7_NLS is the N-terminal domain of the cyclic AMP-dependent protein kinase A, PKA, anchor protein AKAP7. This protein anchors PKA for its role in regulating PKA-mediated gene transcription in both somatic cells and oocytes [1]. AKAP7_NLS carries t ...
AKAP7_NLS is the N-terminal domain of the cyclic AMP-dependent protein kinase A, PKA, anchor protein AKAP7. This protein anchors PKA for its role in regulating PKA-mediated gene transcription in both somatic cells and oocytes [1]. AKAP7_NLS carries the nuclear localisation signal (NLS) KKRKK, that indicates the cellular destiny of this anchor protein [2]. Binding to the regulatory subunits RI and RII of PKA is mediated via the family AKAP7_RIRII_bdg. at the C-terminus. This family represents a region that contains two 2'5' RNA ligase like domains Pfam:PF02834. Presumably this domain carried out some as yet unknown enzymatic function.
Rhodanese has an internal duplication. This Pfam represents a single copy of this duplicated domain. The domain is found as a single copy in other proteins, including phosphatases and ubiquitin C-terminal hydrolases.
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry ...
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry a distinctive five-residue motif termed the proteasome-interacting motif (PIM), which may have a biologically significant role in protein delivery to proteasomes and recruitment of proteasomes to transcription sites [5].
This domain contains a P-loop motif, also found in several other families such as Pfam:PF00071, Pfam:PF00025 and Pfam:PF00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains.
Elongation factor G (EF-G) catalyzes the translocation step of translation. It consists of five structural domains, this entry represents the second domain [1]. This domain adopts a beta barrel structure. This family also includes domains found in ot ...
Elongation factor G (EF-G) catalyzes the translocation step of translation. It consists of five structural domains, this entry represents the second domain [1]. This domain adopts a beta barrel structure. This family also includes domains found in other translation factors such as translation initiation factor IF-2, peptide chain release factor, etc.
The LysM (lysin motif) domain is about 40 residues long. It is found in a variety of enzymes involved in bacterial cell wall degradation [1]. This domain may have a general peptidoglycan binding function. The structure of this domain is known [2].