This is a RING zinc finger domain found in parkin proteins. Parkin consists of a ubiquitin-like (Ubl) domain and a 60-amino acid linker followed by RING0 and three additional zinc finger domains characteristic of the RBR family. This entry relates to ...
This is a RING zinc finger domain found in parkin proteins. Parkin consists of a ubiquitin-like (Ubl) domain and a 60-amino acid linker followed by RING0 and three additional zinc finger domains characteristic of the RBR family. This entry relates to RING1 zinc binding domain. The RING1 domain displays the C3HC4 cross-brace motif characteristic of RING domains. The N-terminal Ubl domain binds to RING1 [3].
This is a RING zinc finger domain found in parkin proteins. Parkin consists of a ubiquitin-like (Ubl) domain and a 60-amino acid linker followed by this domain RING0 and three additional zinc finger domains characteristic of the RBR family. RING0 bin ...
This is a RING zinc finger domain found in parkin proteins. Parkin consists of a ubiquitin-like (Ubl) domain and a 60-amino acid linker followed by this domain RING0 and three additional zinc finger domains characteristic of the RBR family. RING0 binds two coordinated zinc atoms at each extremity of the domain with a hairpin. Deletion of RING0 massively derepressed parkin activity supporting the role of RING0 in autoinhibition, point mutations in RING0 (Phe146 to Ala) or RING2 (Phe463 to Ala) both increased parkin activity. The REP (repressor element of parkin) and RING0 domains play a preeminent role in repressing parkin ligase activity through their interactions with RING1 and RING2, respectively [3].
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry ...
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry a distinctive five-residue motif termed the proteasome-interacting motif (PIM), which may have a biologically significant role in protein delivery to proteasomes and recruitment of proteasomes to transcription sites [5].
Proteins destined for proteasome-mediated degradation may be ubiquitinated. Ubiquitination follows conjugation of ubiquitin to a conserved cysteine residue of UBC homologues. TSG101 is one of several UBC homologues that lacks this active site cystein ...
Proteins destined for proteasome-mediated degradation may be ubiquitinated. Ubiquitination follows conjugation of ubiquitin to a conserved cysteine residue of UBC homologues. TSG101 is one of several UBC homologues that lacks this active site cysteine [4, 5].
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry ...
This family contains a number of ubiquitin-like proteins: SUMO (smt3 homologue) (see Swiss:Q02724), Nedd8 (see Swiss:P29595), Elongin B (see Swiss:Q15370), Rub1 (see Swiss:Q9SHE7), and Parkin (see Swiss:O60260). A number of them are thought to carry a distinctive five-residue motif termed the proteasome-interacting motif (PIM), which may have a biologically significant role in protein delivery to proteasomes and recruitment of proteasomes to transcription sites [5].