2ZUF

Crystal structure of Pyrococcus horikoshii arginyl-tRNA synthetase complexed with tRNA(Arg)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP)

Konno, M.Sumida, T.Uchikawa, E.Mori, Y.Yanagisawa, T.Sekine, S.Yokoyama, S.

(2009) FEBS J 276: 4763-4779

  • DOI: https://doi.org/10.1111/j.1742-4658.2009.07178.x
  • Primary Citation of Related Structures:  
    2ZUE, 2ZUF

  • PubMed Abstract: 

    The ATP-pyrophosphate exchange reaction catalyzed by Arg-tRNA, Gln-tRNA and Glu-tRNA synthetases requires the assistance of the cognate tRNA. tRNA also assists Arg-tRNA synthetase in catalyzing the pyrophosphorolysis of synthetic Arg-AMP at low pH. The mechanism by which the 3'-end A76, and in particular its hydroxyl group, of the cognate tRNA is involved with the exchange reaction catalyzed by those enzymes has yet to be established. We determined a crystal structure of a complex of Arg-tRNA synthetase from Pyrococcus horikoshii, tRNA(Arg)(CCU) and an ATP analog with Rfactor = 0.213 (Rfree = 0.253) at 2.0 A resolution. On the basis of newly obtained structural information about the position of ATP bound on the enzyme, we constructed a structural model for a mechanism in which the formation of a hydrogen bond between the 2'-OH group of A76 of tRNA and the carboxyl group of Arg induces both formation of Arg-AMP (Arg + ATP --> Arg-AMP + pyrophosphate) and pyrophosphorolysis of Arg-AMP (Arg-AMP + pyrophosphate --> Arg + ATP) at low pH. Furthermore, we obtained a structural model of the molecular mechanism for the Arg-tRNA synthetase-catalyzed deacylation of Arg-tRNA (Arg-tRNA + AMP --> Arg-AMP + tRNA at high pH), in which the deacylation of aminoacyl-tRNA bound on Arg-tRNA synthetase and Glu-tRNA synthetase is catalyzed by a quite similar mechanism, whereby the proton-donating group (-NH-C+(NH2)2 or -COOH) of Arg and Glu assists the aminoacyl transfer from the 2'-OH group of tRNA to the phosphate group of AMP at high pH.


  • Organizational Affiliation

    Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan. konno.michiko@ocha.ac.jp


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Arginyl-tRNA synthetase629Pyrococcus horikoshiiMutation(s): 0 
Gene Names: argSPH1478
EC: 6.1.1.19
UniProt
Find proteins for O59147 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Explore O59147 
Go to UniProtKB:  O59147
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO59147
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains LengthOrganismImage
tRNA-Arg78synthetic construct
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 76.21α = 90
b = 60.14β = 107.06
c = 110.33γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-08-18
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-06-21
    Changes: Database references, Derived calculations, Source and taxonomy
  • Version 1.3: 2023-11-08
    Changes: Data collection, Refinement description