8XE7

Crystal structure of human Sirt2 without Sirt2-specific insertion


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.212 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Biophysical insights into the dimer formation of human Sirtuin 2.

Suzuki, N.Konuma, T.Ikegami, T.Akashi, S.

(2024) Protein Sci 33: e4994-e4994

  • DOI: https://doi.org/10.1002/pro.4994
  • Primary Citation of Related Structures:  
    8XE7

  • PubMed Abstract: 

    Sirtuin 2 (SIRT2) is a class III histone deacetylase that is highly conserved from bacteria to mammals. We prepared and characterized the wild-type (WT) and mutant forms of the histone deacetylase (HDAC) domain of human SIRT2 (hSIRT2) using various biophysical methods and evaluated their deacetylation activity. We found that WT hSIRT2 HDAC (residues 52-357) forms a homodimer in a concentration-dependent manner with a dimer-monomer dissociation constant of 8.3 ± 0.5 μM, which was determined by mass spectrometry. The dimer was disrupted into two monomers by binding to the HDAC inhibitors SirReal1 and SirReal2. We also confirmed dimer formation of hSIRT2 HDAC in living cells using a NanoLuc complementation reporter system. Examination of the relationship between dimer formation and deacetylation activity using several mutants of hSIRT2 HDAC revealed that some non-dimerizing mutants exhibited deacetylation activity for the N-terminal peptide of histone H3, similar to the wild type. The hSIRT2 HDAC mutant Δ292-306, which lacks a SIRT2-specific disordered loop region, was identified to exist as a monomer with slightly reduced deacetylation activity; the X-ray structure of the mutant Δ292-306 was almost identical to that of the WT hSIRT2 HDAC bound to an inhibitor. These results indicate that hSIRT2 HDAC forms a dimer, but this is independent of deacetylation activity. Herein, we discuss insights into the dimer formation of hSIRT2 based on our biophysical experimental results.


  • Organizational Affiliation

    Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
NAD-dependent protein deacetylase sirtuin-2293Homo sapiensMutation(s): 0 
Gene Names: SIRT2
EC: 2.3.1 (UniProt), 2.3.1.286 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for Q8IXJ6 (Homo sapiens)
Explore Q8IXJ6 
Go to UniProtKB:  Q8IXJ6
PHAROS:  Q8IXJ6
GTEx:  ENSG00000068903 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8IXJ6
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.212 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 34.893α = 90
b = 69.208β = 99.341
c = 61.171γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
Aimlessdata scaling
BALBESphasing
PHENIXrefinement
Cootmodel building

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Japan Society for the Promotion of Science (JSPS)Japan23K05720
Japan Society for the Promotion of Science (JSPS)JapanJP19H05774
Japan Society for the Promotion of Science (JSPS)Japan21K19236

Revision History  (Full details and data files)

  • Version 1.0: 2024-05-22
    Type: Initial release