8JBA

Discovery and Crystallography Study of Novel Oxadiazole Analogs as Small Molecule PD-1/PD-L1 inhibitors


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.219 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.0 of the entry. See complete history


Literature

Discovery and Crystallography Study of Novel Biphenyl Ether and Oxadiazole Thioether (Non-Arylmethylamine)-Based Small-Molecule PD-1/PD-L1 Inhibitors as Immunotherapeutic Agents.

Liu, J.Cheng, Y.Yuan, L.Liu, T.Ruan, Y.Ren, Y.Li, L.Jiang, S.Xiao, Y.Chen, J.

(2023) J Med Chem 66: 13172-13188

  • DOI: https://doi.org/10.1021/acs.jmedchem.3c01141
  • Primary Citation of Related Structures:  
    8JBA

  • PubMed Abstract: 

    Current small-molecule PD-1/PD-L1 inhibitors are mainly based on the arylmethylamine/biphenyl core scaffold. Herein, we designed for the first time a series of non-arylmethylamine analogues (oxadiazole thioether derivatives) as small-molecule PD-1/PD-L1 inhibitors. Among them, compound LP23 exhibited the most potent PD-L1 inhibitory activity with an IC 50 of 16.7 nM, 3.2-fold better than the lead BMS-202 (IC 50 = 53.6 nM). The X-ray crystal structure of LP23 in complex with PD-L1 was solved at a resolution of 2.6 Å, which further confirmed the high binding affinity of LP23 to PD-L1. In the HepG2/Jurkat T cell co-culture model, LP23 effectively promoted HepG2 cell death by restoring the immune function of T cells. In addition, LP23 showed excellent in vivo antitumor efficacy (TGI = 88.6% at 30 mg/kg) and benign toxicity profiles in a B16-F10 tumor model by modulating PD-L1. In summary, LP23 represents the first non-arylmethylamine-based small-molecule PD-1/PD-L1 inhibitor worthy of further investigation.


  • Organizational Affiliation

    School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Programmed cell death 1 ligand 1
A, B
128Homo sapiensMutation(s): 0 
Gene Names: CD274B7H1PDCD1L1PDCD1LG1PDL1
UniProt & NIH Common Fund Data Resources
Find proteins for Q9NZQ7 (Homo sapiens)
Explore Q9NZQ7 
Go to UniProtKB:  Q9NZQ7
GTEx:  ENSG00000120217 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9NZQ7
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
AU9 (Subject of Investigation/LOI)
Query on AU9

Download Ideal Coordinates CCD File 
C [auth B](2~{S})-2-[[3-[[5-[(2-methyl-3-phenyl-phenoxy)methyl]-1,3,4-oxadiazol-2-yl]sulfanylmethyl]phenyl]methylamino]-3-oxidanyl-propanoic acid
C27 H27 N3 O5 S
AAJMOHIHVOUUDE-QHCPKHFHSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.219 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 83.17α = 90
b = 98.4β = 90
c = 32.65γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
SCALAdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Not funded--

Revision History  (Full details and data files)

  • Version 1.0: 2023-10-25
    Type: Initial release