6N42 | pdb_00006n42

Crystal structure of cysteine-bound ferrous form of the crosslinked human cysteine dioxygenase in the anaerobic condition

  • Classification: OXIDOREDUCTASE
  • Organism(s): Homo sapiens
  • Expression System: Escherichia coli
  • Mutation(s): No 

  • Deposited: 2018-11-16 Released: 2019-04-17 
  • Deposition Author(s): Liu, A., Li, J.
  • Funding Organization(s): National Science Foundation (NSF, United States), National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)

Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 
    0.210 (Depositor), 0.210 (DCC) 
  • R-Value Work: 
    0.172 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 
    0.176 (Depositor) 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted CYSClick on this verticalbar to view details

This is version 1.5 of the entry. See complete history


Literature

Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine.

Li, J.Koto, T.Davis, I.Liu, A.

(2019) Biochemistry 58: 2218-2227

  • DOI: https://doi.org/10.1021/acs.biochem.9b00006
  • Primary Citation of Related Structures:  
    6BPR, 6E87, 6N42, 6N43

  • PubMed Abstract: 

    Cysteine dioxygenase (CDO) is a nonheme iron enzyme that adds two oxygen atoms from dioxygen to the sulfur atom of l-cysteine. Adjacent to the iron site of mammalian CDO, there is a post-translationally generated Cys-Tyr cofactor, whose presence substantially enhances the oxygenase activity. The formation of the Cys-Tyr cofactor in CDO is an autocatalytic process, and it is challenging to study by traditional techniques because the cross-linking reaction is a side, uncoupled, single-turnover oxidation buried among multiple turnovers of l-cysteine oxygenation. Here, we take advantage of our recent success in obtaining a purely uncross-linked human CDO due to site-specific incorporation of 3,5-difluoro-l-tyrosine (F 2 -Tyr) at the cross-linking site through the genetic code expansion strategy. Using EPR spectroscopy, we show that nitric oxide ( NO), an oxygen surrogate, similarly binds to uncross-linked F 2 -Tyr157 CDO as in wild-type human CDO. We determined X-ray crystal structures of uncross-linked F 2 -Tyr157 CDO and mature wild-type CDO in complex with both l-cysteine and NO. These structural data reveal that the active site cysteine (Cys93 in the human enzyme), rather than the generally expected tyrosine (i.e., Tyr157), is well-aligned to be oxidized should the normal oxidation reaction uncouple. This structure-based understanding is further supported by a computational study with models built on the uncross-linked ternary complex structure. Together, these results strongly suggest that the first target to oxidize during the iron-assisted Cys-Tyr cofactor biogenesis is Cys93. Based on these data, a plausible reaction mechanism implementing a cysteine radical involved in the cross-link formation is proposed.


  • Organizational Affiliation

    Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Cysteine dioxygenase type 1200Homo sapiensMutation(s): 0 
Gene Names: CDO1
EC: 1.13.11.20
UniProt & NIH Common Fund Data Resources
Find proteins for Q16878 (Homo sapiens)
Explore Q16878 
Go to UniProtKB:  Q16878
PHAROS:  Q16878
GTEx:  ENSG00000129596 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ16878
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CYS (Subject of Investigation/LOI)
Query on CYS

Download Ideal Coordinates CCD File 
C [auth A]CYSTEINE
C3 H7 N O2 S
XUJNEKJLAYXESH-REOHCLBHSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
I [auth A],
J [auth A],
K [auth A]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
GOL
Query on GOL

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
FE2 (Subject of Investigation/LOI)
Query on FE2

Download Ideal Coordinates CCD File 
B [auth A]FE (II) ION
Fe
CWYNVVGOOAEACU-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free:  0.210 (Depositor), 0.210 (DCC) 
  • R-Value Work:  0.172 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 0.176 (Depositor) 
Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 131.221α = 90
b = 131.221β = 90
c = 34.296γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted CYSClick on this verticalbar to view details

Entry History & Funding Information

Deposition Data

  • Released Date: 2019-04-17 
  • Deposition Author(s): Liu, A., Li, J.

Funding OrganizationLocationGrant Number
National Science Foundation (NSF, United States)United StatesCHE-1808637
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR01GM107529
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR01GM108988

Revision History  (Full details and data files)

  • Version 1.0: 2019-04-17
    Type: Initial release
  • Version 1.1: 2019-05-01
    Changes: Data collection, Database references
  • Version 1.2: 2019-05-15
    Changes: Data collection, Database references
  • Version 1.3: 2019-11-27
    Changes: Author supporting evidence
  • Version 1.4: 2023-10-11
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.5: 2024-10-23
    Changes: Structure summary