6H6Y

GI.1 human norovirus protruding domain in complex with Nano-7


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.58 Å
  • R-Value Free: 0.175 
  • R-Value Work: 0.155 
  • R-Value Observed: 0.156 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural Basis of Nanobodies Targeting the Prototype Norovirus.

Ruoff, K.Kilic, T.Devant, J.Koromyslova, A.Ringel, A.Hempelmann, A.Geiss, C.Graf, J.Haas, M.Roggenbach, I.Hansman, G.

(2019) J Virol 93

  • DOI: https://doi.org/10.1128/JVI.02005-18
  • Primary Citation of Related Structures:  
    6H6Y, 6H6Z, 6H70, 6H71, 6H72

  • PubMed Abstract: 

    Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2'FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2'FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2'FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2'FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2'FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup. IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2'FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.


  • Organizational Affiliation

    Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Capsid protein VP1
A, B, C, D
292Norovirus Hu/1968/USMutation(s): 0 
Gene Names: ORF2
UniProt
Find proteins for Q83884 (Norovirus (strain Human/NoV/United States/Norwalk/1968/GI))
Explore Q83884 
Go to UniProtKB:  Q83884
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ83884
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Nanobody (VHH) Nano-7
E, F, G, H
132Vicugna pacosMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download Ideal Coordinates CCD File 
J [auth A],
Q [auth C],
U [auth D]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
V [auth E],
W [auth F],
X [auth G],
Y [auth H]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
NA
Query on NA

Download Ideal Coordinates CCD File 
I [auth A]
K [auth B]
L [auth B]
M [auth B]
N [auth C]
I [auth A],
K [auth B],
L [auth B],
M [auth B],
N [auth C],
O [auth C],
P [auth C],
R [auth D],
S [auth D],
T [auth D]
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.58 Å
  • R-Value Free: 0.175 
  • R-Value Work: 0.155 
  • R-Value Observed: 0.156 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 59.17α = 90
b = 140.9β = 91.81
c = 92.15γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2018-12-19
    Type: Initial release
  • Version 1.1: 2019-01-23
    Changes: Data collection, Database references
  • Version 1.2: 2019-03-13
    Changes: Data collection, Database references
  • Version 1.3: 2024-01-17
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.4: 2024-11-20
    Changes: Structure summary