4LDX

Crystal structure of the DNA binding domain of arabidopsis thaliana auxin response factor 1 (ARF1) in complex with protomor-like sequence ER7


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural Basis for DNA Binding Specificity by the Auxin-Dependent ARF Transcription Factors.

Boer, D.R.Freire-Rios, A.van den Berg, W.A.Saaki, T.Manfield, I.W.Kepinski, S.Lopez-Vidrieo, I.Franco-Zorrilla, J.M.de Vries, S.C.Solano, R.Weijers, D.Coll, M.

(2014) Cell 156: 577-589

  • DOI: https://doi.org/10.1016/j.cell.2013.12.027
  • Primary Citation of Related Structures:  
    4LDU, 4LDV, 4LDW, 4LDX, 4LDY

  • PubMed Abstract: 

    Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.


  • Organizational Affiliation

    Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10-12, 08028 Barcelona, Spain.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Auxin response factor 1
A, B
363Arabidopsis thalianaMutation(s): 0 
Gene Names: ARF1At1g59750F23H11.7
UniProt
Find proteins for Q8L7G0 (Arabidopsis thaliana)
Explore Q8L7G0 
Go to UniProtKB:  Q8L7G0
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8L7G0
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
ER7, forward sequence21N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains LengthOrganismImage
ER7, reverse sequence21N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.52α = 90
b = 105.19β = 98.14
c = 127.91γ = 90
Software Package:
Software NamePurpose
MxCuBEdata collection
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-02-12
    Type: Initial release
  • Version 1.1: 2023-09-20
    Changes: Data collection, Database references, Refinement description