3W8G

MamM V260R


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.184 
  • R-Value Observed: 0.188 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Bacterial Magnetosome Biomineralization - A Novel Platform to Study Molecular Mechanisms of Human CDF-Related Type-II Diabetes

Zeytuni, N.Uebe, R.Maes, M.Davidov, G.Baram, M.Raschdorf, O.Friedler, A.Miller, Y.Schuler, D.Zarivach, R.

(2014) PLoS One 9: e97154-e97154

  • DOI: https://doi.org/10.1371/journal.pone.0097154
  • Primary Citation of Related Structures:  
    3W8G

  • PubMed Abstract: 

    Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all organisms. CDFs were found to be involved in numerous human health conditions, such as Type-II diabetes and neurodegenerative diseases. In this work, we established the magnetite biomineralizing alphaproteobacterium Magnetospirillum gryphiswaldense as an effective model system to study CDF-related Type-II diabetes. Here, we introduced two ZnT-8 Type-II diabetes-related mutations into the M. gryphiswaldense MamM protein, a magnetosome-associated CDF transporter essential for magnetite biomineralization within magnetosome vesicles. The mutations' effects on magnetite biomineralization and iron transport within magnetosome vesicles were tested in vivo. Additionally, by combining several in vitro and in silico methodologies we provide new mechanistic insights for ZnT-8 polymorphism at position 325, located at a crucial dimerization site important for CDF regulation and activation. Overall, by following differentiated, easily measurable, magnetism-related phenotypes we can utilize magnetotactic bacteria for future research of CDF-related human diseases.


  • Organizational Affiliation

    Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva, Israel.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Magnetosome protein MamM
A, B
108Magnetospirillum gryphiswaldense MSR-1Mutation(s): 1 
Gene Names: mamMmgI491MGR_4095
UniProt
Find proteins for V6F235 (Magnetospirillum gryphiswaldense (strain DSM 6361 / JCM 21280 / NBRC 15271 / MSR-1))
Explore V6F235 
Go to UniProtKB:  V6F235
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupV6F235
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.184 
  • R-Value Observed: 0.188 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 68.481α = 90
b = 68.481β = 90
c = 56.395γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-06-11
    Type: Initial release
  • Version 1.1: 2017-11-22
    Changes: Refinement description
  • Version 1.2: 2023-11-08
    Changes: Data collection, Database references, Refinement description