Structural basis of HIV-1 resistance to AZT by excision.
Tu, X., Das, K., Han, Q., Bauman, J.D., Clark, A.D., Hou, X., Frenkel, Y.V., Gaffney, B.L., Jones, R.A., Boyer, P.L., Hughes, S.H., Sarafianos, S.G., Arnold, E.(2010) Nat Struct Mol Biol 17: 1202-1209
- PubMed: 20852643 
- DOI: https://doi.org/10.1038/nsmb.1908
- Primary Citation of Related Structures:  
3KLE, 3KLF, 3KLG, 3KLH, 3KLI - PubMed Abstract: 
Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.
Organizational Affiliation: 
Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA.