3D7S

Crystal structure of Wild-Type E. Coli Asparate Transcarbamoylase at pH 8.5 at 2.80 A Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The first high pH structure of Escherichia coli aspartate transcarbamoylase.

Stieglitz, K.A.Xia, J.Kantrowitz, E.R.

(2008) Proteins 74: 318-327

  • DOI: https://doi.org/10.1002/prot.22162
  • Primary Citation of Related Structures:  
    3D7S

  • PubMed Abstract: 

    The activity and cooperativity of Escherichia coli aspartate transcarbamoylase (ATCase) vary as a function of pH, with a maximum of both parameters at approximately pH 8.3. Here we report the first X-ray structure of unliganded ATCase at pH 8.5, to establish a structural basis for the observed Bohr effect. The overall conformation of the active site at pH 8.5 more closely resembles the active site of the enzyme in the R-state structure than other T-state structures. In the structure of the enzyme at pH 8.5 the 80's loop is closer to its position in R-state structures. A unique electropositive channel, comprised of residues from the 50's region, is observed in this structure, with Arg54 positioned in the center of the channel. The planar angle between the carbamoyl phosphate and aspartate domains of the catalytic chain is more open at pH 8.5 than in ATCase structures determined at lower pH values. The structure of the enzyme at pH 8.5 also exhibits lengthening of a number of interactions in the interface between the catalytic and regulatory chains, whereas a number of interactions between the two catalytic trimers are shortened. These alterations in the interface between the upper and lower trimers may directly shift the allosteric equilibrium and thus the cooperativity of the enzyme. Alterations in the electropositive environment of the active site and alterations in the position of the catalytic chain domains may be responsible for the enhanced activity of the enzyme at pH 8.5.


  • Organizational Affiliation

    Department of Chemistry, University of Massachusetts, Boston, Massachusetts 02125, USA. kimberly.stieglitz@umb.edu


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Aspartate carbamoyltransferase catalytic chain
A, C
310Escherichia coli K-12Mutation(s): 0 
Gene Names: pyrBb4245JW4204
EC: 2.1.3.2
UniProt
Find proteins for P0A786 (Escherichia coli (strain K12))
Explore P0A786 
Go to UniProtKB:  P0A786
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A786
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Aspartate carbamoyltransferase regulatory chain
B, D
153Escherichia coli K-12Mutation(s): 0 
Gene Names: pyrIb4244JW4203
EC: 2.1.3.2
UniProt
Find proteins for P0A7F3 (Escherichia coli (strain K12))
Explore P0A7F3 
Go to UniProtKB:  P0A7F3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A7F3
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 
  • Space Group: H 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 129.68α = 90
b = 129.68β = 90
c = 198.58γ = 120
Software Package:
Software NamePurpose
CrystalCleardata collection
AMoREphasing
CNSrefinement
d*TREKdata reduction
d*TREKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-07-29
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-08-30
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.3: 2024-11-06
    Changes: Structure summary