3C8B

Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with inhibitory peptide RRGI


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.47 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.204 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure- and Substrate-based Inhibitor Design for Clostridium botulinum Neurotoxin Serotype A

Kumaran, D.Rawat, R.Ludivico, M.L.Ahmed, S.A.Swaminathan, S.

(2008) J Biol Chem 283: 18883-18891

  • DOI: https://doi.org/10.1074/jbc.M801240200
  • Primary Citation of Related Structures:  
    3BWI, 3C88, 3C89, 3C8A, 3C8B

  • PubMed Abstract: 

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, and RRGM at resolutions of 1.6-1.8 A. These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr(366) and NH(2) of Arg(363) are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe(194), Thr(215), Thr(220), Asp(370), and Arg(363). The K(i) of the best inhibitory tetrapeptide is 157 nm.


  • Organizational Affiliation

    Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Botulinum neurotoxin A light chain432Clostridium botulinumMutation(s): 0 
Gene Names: botA
EC: 3.4.24.69
UniProt
Find proteins for P0DPI1 (Clostridium botulinum (strain Hall / ATCC 3502 / NCTC 13319 / Type A))
Explore P0DPI1 
Go to UniProtKB:  P0DPI1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0DPI1
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Inhibitor peptide RRGI5synthetic constructMutation(s): 0 
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.47 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.204 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.619α = 90
b = 66.393β = 98.47
c = 64.951γ = 90
Software Package:
Software NamePurpose
MOLREPphasing
ARP/wARPmodel building
CNSrefinement
CBASSdata collection
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-04-22
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Atomic model, Database references, Derived calculations, Non-polymer description, Structure summary, Version format compliance
  • Version 1.2: 2023-08-30
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.3: 2024-10-30
    Changes: Source and taxonomy, Structure summary