3BTR

AR-NLS:Importin-alpha complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis for the nuclear import of the human androgen receptor

Cutress, M.L.Whitaker, H.C.Mills, I.G.Stewart, M.Neal, D.E.

(2008) J Cell Sci 121: 957-968

  • DOI: https://doi.org/10.1242/jcs.022103
  • Primary Citation of Related Structures:  
    3BTR

  • PubMed Abstract: 

    Ligand-dependent nuclear import is crucial for the function of the androgen receptor (AR) in both health and disease. The unliganded AR is retained in the cytoplasm but, on binding 5alpha-dihydrotestosterone, it translocates into the nucleus and alters transcription of its target genes. Nuclear import of AR is mediated by the nuclear import factor importin-alpha, which functions as a receptor that recognises and binds to specific nuclear localisation signal (NLS) motifs on cargo proteins. We show here that the AR binds to importin-alpha directly, albeit more weakly than the NLS of SV40 or nucleoplasmin. We describe the 2.6-angstroms-resolution crystal structure of the importin-alpha-AR-NLS complex, and show that the AR binds to the major NLS-binding site on importin-alpha in a manner different from most other NLSs. Finally, we have shown that pathological mutations within the NLS of AR that are associated with prostate cancer and androgen-insensitivity syndrome reduce the binding affinity to importin-alpha and, subsequently, retard nuclear import; surprisingly, however, the transcriptional activity of these mutants varies widely. Thus, in addition to its function in the nuclear import of AR, the NLS in the hinge region of AR has a separate, quite distinct role on transactivation, which becomes apparent once nuclear import has been achieved.


  • Organizational Affiliation

    Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge, CB2 0RE, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Importin subunit alpha-2A [auth C]427Mus musculusMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P52293 (Mus musculus)
Explore P52293 
Go to UniProtKB:  P52293
IMPC:  MGI:103561
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP52293
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Androgen receptor15Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P10275 (Homo sapiens)
Explore P10275 
Go to UniProtKB:  P10275
PHAROS:  P10275
GTEx:  ENSG00000169083 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP10275
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 78.274α = 90
b = 89.372β = 90
c = 98.104γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction
MAR345dtbdata collection
REFMACphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-12-30
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Refinement description