2ZVU

Crystal structure of rat heme oxygenase-1 in complex with ferrous verdoheme


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.192 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of rat haem oxygenase-1 in complex with ferrous verdohaem: presence of a hydrogen-bond network on the distal side

Sato, H.Sugishima, M.Sakamoto, H.Higashimoto, Y.Shimokawa, C.Fukuyama, K.Palmer, G.Noguchi, M.

(2009) Biochem J 419: 339-345

  • DOI: https://doi.org/10.1042/BJ20082279
  • Primary Citation of Related Structures:  
    2ZVU

  • PubMed Abstract: 

    HO (haem oxygenase) catalyses the degradation of haem to biliverdin, CO and ferrous iron via three successive oxygenation reactions, i.e. haem to alpha-hydroxyhaem, alpha-hydroxyhaem to alpha-verdohaem and alpha-verdohaem to ferric biliverdin-iron chelate. In the present study, we determined the crystal structure of ferrous alpha-verdohaem-rat HO-1 complex at 2.2 A (1 A=0.1 nm) resolution. The overall structure of the verdohaem complex was similar to that of the haem complex. Water or OH- was co-ordinated to the verdohaem iron as a distal ligand. A hydrogen-bond network consisting of water molecules and several amino acid residues was observed at the distal side of verdohaem. Such a hydrogen-bond network was conserved in the structures of rat HO-1 complexes with haem and with the ferric biliverdin-iron chelate. This hydrogen-bond network may act as a proton donor to form an activated oxygen intermediate, probably a ferric hydroperoxide species, in the degradation of alpha-verdohaem to ferric biliverdin-iron chelate similar to that seen in the first oxygenation step.


  • Organizational Affiliation

    Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Heme oxygenase 1267Rattus norvegicusMutation(s): 0 
Gene Names: Hmox1
EC: 1.14.99.3
UniProt
Find proteins for P06762 (Rattus norvegicus)
Explore P06762 
Go to UniProtKB:  P06762
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06762
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
VEA
Query on VEA

Download Ideal Coordinates CCD File 
B [auth A]5-OXA-PROTOPORPHYRIN IX CONTAINING FE
C33 H31 Fe N4 O5
OCHHJFVQYXRHAA-HPQJSUICSA-M
FMT
Query on FMT

Download Ideal Coordinates CCD File 
C [auth A]FORMIC ACID
C H2 O2
BDAGIHXWWSANSR-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.192 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.346α = 90
b = 65.346β = 90
c = 120.24γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-02-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description