Crystal structure of isoaspartyl aminopeptidase in complex with L-aspartate
Michalska, K., Brzezinski, K., Jaskolski, M.(2005) J Biol Chem 280: 28484-28491
- PubMed: 15946951 
- DOI: https://doi.org/10.1074/jbc.M504501200
- Primary Citation of Related Structures:  
2ZAL - PubMed Abstract: 
The crystal structure of Escherichia coli isoaspartyl aminopeptidase/asparaginase (EcAIII), an enzyme belonging to the N-terminal nucleophile (Ntn)-hydrolases family, has been determined at 1.9-A resolution for a complex obtained by cocrystallization with l-aspartate, which is a product of both enzymatic reactions catalyzed by EcAIII. The enzyme is a dimer of heterodimers, (alphabeta)(2). The (alphabeta) heterodimer, which arises by autoproteolytic cleavage of the immature protein, exhibits an alphabetabetaalpha-sandwich fold, typical for Ntn-hydrolases. The asymmetric unit contains one copy of the EcAIII.Asp complex, with clearly visible l-aspartate ligands, one bound in each of the two active sites of the enzyme. The l-aspartate ligand is located near Thr(179), the N-terminal residue of subunit beta liberated in the autoproteolytic event. Structural comparisons with the free form of EcAIII reveal that there are no major rearrangements of the active site upon aspartate binding. Although the ligand binding mode is similar to that observed in an l-aspartate complex of the related enzyme human aspartylglucosaminidase, the architecture of the EcAIII active site sheds light on the question of substrate specificity and explains why EcAIII is not able to hydrolyze glycosylated asparagine substrates.
Organizational Affiliation: 
Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan 60-780, Poland.