2MAV

NMR Structure of N2-IQ-dG at the G3 position in the NarI recognition sequence


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 10 
  • Conformers Submitted: 10 
  • Selection Criteria: back calculated data agree with experimental NOESY spectrum 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence.

Stavros, K.M.Hawkins, E.K.Rizzo, C.J.Stone, M.P.

(2014) Nucleic Acids Res 42: 3450-3463

  • DOI: https://doi.org/10.1093/nar/gkt1109
  • Primary Citation of Related Structures:  
    2MAV

  • PubMed Abstract: 

    2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5'- and 3'-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a 'base-displaced intercalated' conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson-Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.


  • Organizational Affiliation

    Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235-1822, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA_(5'-D(*CP*TP*CP*GP*GP*CP*GP*CP*CP*AP*TP*C)-3')12N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
DNA_(5'-D(*GP*AP*TP*GP*GP*CP*GP*CP*CP*GP*AP*G)-3')12N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 10 
  • Conformers Submitted: 10 
  • Selection Criteria: back calculated data agree with experimental NOESY spectrum 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-05-14
    Type: Initial release
  • Version 1.1: 2024-05-01
    Changes: Data collection, Database references, Derived calculations