2JXG

Solution Structure of the DNA Binding domain of Proline Utilization A (PutA)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report

Currently 2JXG does not have a validation slider image.


This is version 1.3 of the entry. See complete history


Literature

Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex

Halouska, S.Zhou, Y.Becker, D.F.Powers, R.

(2008) Proteins 75: 12-27

  • DOI: https://doi.org/10.1002/prot.22217
  • Primary Citation of Related Structures:  
    2JXG, 2JXH, 2JXI

  • PubMed Abstract: 

    Proline utilization A (PutA) is a membrane-associated multifunctional enzyme that catalyzes the oxidation of proline to glutamate in a two-step process. In certain, gram-negative bacteria such as Pseudomonas putida, PutA also acts as an auto repressor in the cytoplasm, when an insufficient concentration of proline is available. Here, the N-terminal residues 1-45 of PutA from P. putida (PpPutA45) are shown to be responsible for DNA binding and dimerization. The solution structure of PpPutA45 was determined using NMR methods, where the protein is shown to be a symmetrical homodimer (12 kDa) consisting of two ribbon-helix-helix (RHH) structures. DNA sequence recognition by PpPutA45 was determined using DNA gel mobility shift assays and NMR chemical shift perturbations (CSPs). PpPutA45 was shown to bind a 14 base-pair DNA oligomer (5'-GCGGTTGCACCTTT-3'). A model of the PpPutA45-DNA oligomer complex was generated using Haddock 2.1. The antiparallel beta-sheet that results from PpPutA45 dimerization serves as the DNA recognition binding site by inserting into the DNA major groove. The dimeric core of four alpha-helices provides a structural scaffold for the beta-sheet from which residues Thr5, Gly7, and Lys9 make sequence-specific contacts with the DNA. The structural model implies flexibility of Lys9 which can make hydrogen bond contacts with either guanine or thymine. The high sequence and structure conservation of the PutA RHH domain suggest interdomain interactions play an important role in the evolution of the protein.


  • Organizational Affiliation

    Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Proline dehydrogenase
A, B
45Pseudomonas putidaMutation(s): 0 
EC: 1.2.1.88 (UniProt), 1.5.5.2 (UniProt)
UniProt
Find proteins for Q9R9T7 (Pseudomonas putida)
Explore Q9R9T7 
Go to UniProtKB:  Q9R9T7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9R9T7
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report

Currently 2JXG does not have a validation slider image.



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-16
    Changes: Data collection, Database references, Derived calculations
  • Version 1.3: 2024-05-29
    Changes: Data collection