2JMZ

Solution structure of a KlbA intein precursor from Methanococcus jannaschii


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

NMR structure of a KlbA intein precursor from Methanococcus jannaschii

Johnson, M.A.Southworth, M.W.Herrmann, T.Brace, L.Perler, F.B.Wuthrich, K.

(2007) Protein Sci 16: 1316-1328

  • DOI: https://doi.org/10.1110/ps.072816707
  • Primary Citation of Related Structures:  
    2JMZ, 2JNQ

  • PubMed Abstract: 

    Certain proteins of unicellular organisms are translated as precursor polypeptides containing inteins (intervening proteins), which are domains capable of performing protein splicing. These domains, in conjunction with a single residue following the intein, catalyze their own excision from the surrounding protein (extein) in a multistep reaction involving the cleavage of two intein-extein peptide bonds and the formation of a new peptide bond that ligates the two exteins to yield the mature protein. We report here the solution NMR structure of a 186-residue precursor of the KlbA intein from Methanococcus jannaschii, comprising the intein together with N- and C-extein segments of 7 and 11 residues, respectively. The intein is shown to adopt a single, well-defined globular domain, representing a HINT (Hedgehog/Intein)-type topology. Fourteen beta-strands are arranged in a complex fold that includes four beta-hairpins and an antiparallel beta-ribbon, and there is one alpha-helix, which is packed against the beta-ribbon, and one turn of 3(10)-helix in the loop between the beta-strands 8 and 9. The two extein segments show increased disorder, and form only minimal nonbonding contacts with the intein domain. Structure-based mutation experiments resulted in a proposal for functional roles of individual residues in the intein catalytic mechanism.


  • Organizational Affiliation

    The Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Hypothetical protein MJ0781186Methanocaldococcus jannaschiiMutation(s): 2 
UniProt
Find proteins for Q58191 (Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440))
Explore Q58191 
Go to UniProtKB:  Q58191
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ58191
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-07-10
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-12-20
    Changes: Data collection, Other