2GEZ

Crystal structure of potassium-independent plant asparaginase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.192 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of plant asparaginase.

Michalska, K.Bujacz, G.Jaskolski, M.

(2006) J Mol Biol 360: 105-116

  • DOI: https://doi.org/10.1016/j.jmb.2006.04.066
  • Primary Citation of Related Structures:  
    2GEZ

  • PubMed Abstract: 

    In plants, specialized enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. In addition, K+-independent plant asparaginases are also active in splitting the aberrant isoaspartyl peptide bonds, which makes these proteins important for seed viability and germination. Here, we present the crystal structure of potassium-independent L-asparaginase from yellow lupine (LlA) and confirm the classification of this group of enzymes in the family of Ntn-hydrolases. The alpha- and beta-subunits that form the mature (alphabeta)2 enzyme arise from autoproteolytic cleavage of two copies of a precursor protein. In common with other Ntn-hydrolases, the (alphabeta) heterodimer has a sandwich-like fold with two beta-sheets flanked by two layers of alpha-helices (alphabetabetaalpha). The nucleophilic Thr193 residue, which is liberated in the autocatalytic event at the N terminus of subunit beta, is part of an active site that is similar to that observed in a homologous bacterial enzyme. An unusual sodium-binding loop of the bacterial protein, necessary for proper positioning of all components of the active site, shows strictly conserved conformation and metal coordination in the plant enzyme. A chloride anion complexed in the LlA structure marks the position of the alpha-carboxylate group of the L-aspartyl substrate/product moiety. Detailed analysis of the active site suggests why the plant enzyme hydrolyzes asparagine and its beta-peptides but is inactive towards substrates accepted by similar Ntn-hydrolases, such as taspase1, an enzyme implicated in some human leukemias. Structural comparisons of LlA and taspase1 provide interesting insights into the role of small inorganic ions in the latter enzyme.


  • Organizational Affiliation

    Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
L-asparaginase alpha subunit
A, C, E, G
195Lupinus luteusMutation(s): 0 
EC: 3.5.1.1 (PDB Primary Data), 3.4.19.5 (UniProt)
UniProt
Find proteins for Q9ZSD6 (Lupinus luteus)
Explore Q9ZSD6 
Go to UniProtKB:  Q9ZSD6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9ZSD6
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
L-asparaginase beta subunit
B, D, F, H
133Lupinus luteusMutation(s): 0 
EC: 3.5.1.1 (PDB Primary Data), 3.4.19.5 (UniProt)
UniProt
Find proteins for Q9ZSD6 (Lupinus luteus)
Explore Q9ZSD6 
Go to UniProtKB:  Q9ZSD6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9ZSD6
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download Ideal Coordinates CCD File 
J [auth B]
L [auth D]
M [auth D]
O [auth F]
P [auth F]
J [auth B],
L [auth D],
M [auth D],
O [auth F],
P [auth F],
R [auth H]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
NA
Query on NA

Download Ideal Coordinates CCD File 
I [auth A],
K [auth C],
N [auth E],
Q [auth G]
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.192 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.68α = 100.6
b = 60.2β = 92.9
c = 114.63γ = 113.4
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-07-25
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Derived calculations, Version format compliance
  • Version 1.3: 2023-08-30
    Changes: Data collection, Database references, Derived calculations, Refinement description