2BGL

X-Ray structure of binary-Secoisolariciresinol Dehydrogenase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.201 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal Structures of Apo-Form and Binary/Ternary Complexes of Podophyllum Secoisolariciresinol Dehydrogenase, an Enzyme Involved in Formation of Health-Protecting and Plant Defense Lignans

Youn, B.Moinuddin, S.G.Davin, L.B.Lewis, N.G.Kang, C.

(2005) J Biol Chem 280: 12917

  • DOI: https://doi.org/10.1074/jbc.M413266200
  • Primary Citation of Related Structures:  
    2BGK, 2BGL, 2BGM

  • PubMed Abstract: 

    (-)-Matairesinol is a central biosynthetic intermediate to numerous 8-8'-lignans, including the antiviral agent podophyllotoxin in Podophyllum species and its semi-synthetic anticancer derivatives teniposide, etoposide, and Etopophos. It is formed by action of an enantiospecific secoisolariciresinol dehydrogenase, an NAD(H)-dependent oxidoreductase that catalyzes the conversion of (-)-secoisolariciresinol. Matairesinol is also a plant-derived precursor of the cancer-preventative "mammalian" lignan or "phytoestrogen" enterolactone, formed in the gut following ingestion of high fiber dietary foodstuffs, for example. Additionally, secoisolariciresinol dehydrogenase is involved in pathways to important plant defense molecules, such as plicatic acid in the western red cedar (Thuja plicata) heartwood. To understand the molecular and enantiospecific basis of Podophyllum secoisolariciresinol dehydrogenase, crystal structures of the apo-form and binary/ternary complexes were determined at 1.6, 2.8, and 2.0 angstrom resolution, respectively. The enzyme is a homotetramer, consisting of an alpha/beta single domain monomer containing seven parallel beta-strands flanked by eight alpha-helices on both sides. Its overall monomeric structure is similar to that of NAD(H)-dependent short-chain dehydrogenases/reductases, with a conserved Asp47 forming a hydrogen bond with both hydroxyl groups of the adenine ribose of NAD(H), and thus specificity toward NAD(H) instead of NADP(H). The highly conserved catalytic triad (Ser153, Tyr167, and Lys171) is adjacent to both NAD(+) and substrate molecules, where Tyr167 functions as a general base. Following analysis of high resolution structures of the apo-form and two complex forms, the molecular basis for both the enantio-specificity and the reaction mechanism of secoisolariciresinol dehydrogenase is discussed and compared with that of pinoresinol-lariciresinol reductase.


  • Organizational Affiliation

    School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RHIZOME SECOISOLARICIRESINOL DEHYDROGENASE278Podophyllum peltatumMutation(s): 0 
EC: 1.1.1.331
UniProt
Find proteins for Q94KL8 (Podophyllum peltatum)
Explore Q94KL8 
Go to UniProtKB:  Q94KL8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ94KL8
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAJ
Query on NAJ

Download Ideal Coordinates CCD File 
B [auth A]NICOTINAMIDE-ADENINE-DINUCLEOTIDE (ACIDIC FORM)
C21 H27 N7 O14 P2
BAWFJGJZGIEFAR-NNYOXOHSSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.201 
  • Space Group: F 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 58.51α = 90
b = 118.91β = 90
c = 132γ = 90
Software Package:
Software NamePurpose
X-PLORrefinement
CrystalCleardata reduction
CrystalCleardata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-01-13
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Refinement description