Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II.
Wernimont, A.K., Weissenhorn, W.(2004) BMC Struct Biol 4: 10-10
- PubMed: 15579210 
- DOI: https://doi.org/10.1186/1472-6807-4-10
- Primary Citation of Related Structures:  
1XB4 - PubMed Abstract: 
Down-regulation of plasma membrane receptors via the endocytic pathway involves their monoubiquitylation, transport to endosomal membranes and eventual sorting into multi vesicular bodies (MVB) destined for lysosomal degradation. Successive assemblies of Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II and III) largely mediate sorting of plasma membrane receptors at endosomal membranes, the formation of multivesicular bodies and their release into the endosomal lumen. In addition, the human ESCRT-II has been shown to form a complex with RNA polymerase II elongation factor ELL in order to exert transcriptional control activity. Here we report the crystal structure of Vps25 at 3.1 A resolution. Vps25 crystallizes in a dimeric form and each monomer is composed of two winged helix domains arranged in tandem. Structural comparisons detect no conformational changes between unliganded Vps25 and Vps25 within the ESCRT-II complex composed of two Vps25 copies and one copy each of Vps22 and Vps36 12. Our structural analyses present a framework for studying Vps25 interactions with ESCRT-I and ESCRT-III partners. Winged helix domain containing proteins have been implicated in nucleic acid binding and it remains to be determined whether Vps25 has a similar activity which might play a role in the proposed transcriptional control exerted by Vps25 and/or the whole ESCRT-II complex.
Organizational Affiliation: 
European Molecular Biology Laboratory, Grenoble, France. wernimont@embl-grenoble.fr