1U2T

X-Ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp. PCC6803 in complex with sucrose6P


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.165 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell

Fieulaine, S.Lunn, J.E.Borel, F.Ferrer, J.-L.

(2005) Plant Cell 17: 2049-2058

  • DOI: https://doi.org/10.1105/tpc.105.031229
  • Primary Citation of Related Structures:  
    1S2O, 1TJ3, 1TJ4, 1TJ5, 1U2S, 1U2T

  • PubMed Abstract: 

    Sucrose-phosphatase (SPP) catalyzes the final step in the pathway of sucrose biosynthesis in both plants and cyanobacteria, and the SPPs from these two groups of organisms are closely related. We have crystallized the enzyme from the cyanobacterium Synechocystis sp PCC 6803 and determined its crystal structure alone and in complex with various ligands. The protein consists of a core domain containing the catalytic site and a smaller cap domain that contains a glucose binding site. Two flexible hinge loops link the two domains, forming a structure that resembles a pair of sugar tongs. The glucose binding site plays a major role in determining the enzyme's remarkable substrate specificity and is also important for its inhibition by sucrose and glucose. It is proposed that the catalytic reaction is initiated by nucleophilic attack on the substrate by Asp9 and involves formation of a covalent phospho-Asp9-enzyme intermediate. From modeling based on the SPP structure, we predict that the noncatalytic SPP-like domain of the Synechocystis sucrose-phosphate synthase could bind sucrose-6(F)-phosphate and propose that this domain might be involved in metabolite channeling between the last two enzymes in the pathway of sucrose synthesis.


  • Organizational Affiliation

    Institut de Biologie Structurale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier, 38027 Grenoble Cedex 1, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
sucrose-phosphatase (SPP)244Synechocystis sp. PCC 6803Mutation(s): 0 
Gene Names: spp
EC: 3.1.3.24
UniProt
Find proteins for P74325 (Synechocystis sp. (strain ATCC 27184 / PCC 6803 / Kazusa))
Explore P74325 
Go to UniProtKB:  P74325
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP74325
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
6-O-phosphono-beta-D-fructofuranose-(2-1)-alpha-D-glucopyranose
B
2N/A
Glycosylation Resources
GlyTouCan:  G69451QS
GlyCosmos:  G69451QS
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.165 
  • Space Group: P 65 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 68.86α = 90
b = 68.86β = 90
c = 268.83γ = 120
Software Package:
Software NamePurpose
XDSdata scaling
XDSdata reduction
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-06-14
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Non-polymer description, Structure summary
  • Version 2.1: 2023-08-23
    Changes: Data collection, Database references, Refinement description, Structure summary