1TTM

Human carbonic anhydrase II complexed with 667-coumate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.180 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of human carbonic anhydrase II at 1.95 A resolution in complex with 667-coumate, a novel anti-cancer agent

Lloyd, M.D.Pederick, R.L.Natesh, R.Woo, L.W.L.Purohit, A.Reed, M.J.Acharya, K.R.Potter, B.V.L.

(2005) Biochem J 385: 715-720

  • DOI: https://doi.org/10.1042/BJ20041037
  • Primary Citation of Related Structures:  
    1TTM

  • PubMed Abstract: 

    CA (carbonic anhydrase) catalyses the reversible hydration of carbon dioxide into bicarbonate, and at least 14 isoforms have been identified in vertebrates. The role of CA type II in maintaining the fluid and pH balance has made it an attractive drug target for the treatment of glaucoma and cancer. 667-coumate is a potent inhibitor of the novel oncology target steroid sulphatase and is currently in Phase 1 clinical trials for hormone-dependent breast cancer. It also inhibits CA II in vitro. In the present study, CA II was crystallized with 667-coumate and the structure was determined by X-ray crystallography at 1.95 A (1 A=0.1 nm) resolution. The structure reported here is the first for an inhibitor based on a coumarin ring and shows ligation of the sulphamate group to the active-site zinc at 2.15 A through a nitrogen anion. The first two rings of the coumarin moiety are bound within the hydrophobic binding site of CA II. Important residues contributing to binding include Val-121, Phe-131, Val-135, Leu-141, Leu-198 and Pro-202. The third seven-membered ring is more mobile and is located in the channel leading to the surface of the enzyme. Pharmacokinetic studies show enhanced stability of 667-coumate in vivo and this has been ascribed to binding of CA II in erythrocytes. This result provides a structural basis for the stabilization and long half-life of 667-coumate in blood compared with its rapid disappearance in plasma, and suggests that reversible binding of inhibitors to CA may be a general method of delivering this type of labile drug.


  • Organizational Affiliation

    Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. M.D.Lloyd@bath.ac.uk


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Carbonic anhydrase II259Homo sapiensMutation(s): 0 
Gene Names: CA2
EC: 4.2.1.1 (PDB Primary Data), 4.2.1.69 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P00918 (Homo sapiens)
Explore P00918 
Go to UniProtKB:  P00918
PHAROS:  P00918
GTEx:  ENSG00000104267 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00918
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
667 PDBBind:  1TTM Kd: 45 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.180 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 42.525α = 90
b = 72.522β = 90
c = 75.379γ = 90
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-10-05
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description