Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase.
Mol, C.D., Dougan, D.R., Schneider, T.R., Skene, R.J., Kraus, M.L., Scheibe, D.N., Snell, G.P., Zou, H., Sang, B.C., Wilson, K.P.(2004) J Biol Chem 279: 31655-31663
- PubMed: 15123710 
- DOI: https://doi.org/10.1074/jbc.M403319200
- Primary Citation of Related Structures:  
1T45, 1T46 - PubMed Abstract: 
The activity of the c-Kit receptor protein-tyrosine kinase is tightly regulated in normal cells, whereas deregulated c-Kit kinase activity is implicated in the pathogenesis of human cancers. The c-Kit juxtamembrane region is known to have an autoinhibitory function; however the precise mechanism by which c-Kit is maintained in an autoinhibited state is not known. We report the 1.9-A resolution crystal structure of native c-Kit kinase in an autoinhibited conformation and compare it with active c-Kit kinase. Autoinhibited c-Kit is stabilized by the juxtamembrane domain, which inserts into the kinase-active site and disrupts formation of the activated structure. A 1.6-A crystal structure of c-Kit in complex with STI-571 (Imatinib or Gleevec) demonstrates that inhibitor binding disrupts this natural mechanism for maintaining c-Kit in an autoinhibited state. Together, these results provide a structural basis for understanding c-Kit kinase autoinhibition and will facilitate the structure-guided design of specific inhibitors that target the activated and autoinhibited conformations of c-Kit kinase.
Organizational Affiliation: 
Syrrx, Inc., San Diego, California, 92121, USA. clifford.mol@syrrx.com