The structure of the 1L-myo-inositol-1-phosphate synthase-NAD+-2-deoxy-D-glucitol 6-(E)-vinylhomophosphonate complex demands a revision of the enzyme mechanism.
Jin, X., Foley, K.M., Geiger, J.H.(2004) J Biol Chem 279: 13889-13895
- PubMed: 14684747 
- DOI: https://doi.org/10.1074/jbc.M308986200
- Primary Citation of Related Structures:  
1RM0 - PubMed Abstract: 
1l-myo-inositol 1-phosphate (MIP) synthase catalyzes the conversion of d-glucose 6-phosphate to 1l-myo-inositol 1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, enolization, intramolecular aldol cyclization, and reduction. Here we present the structure of MIP synthase in complex with NAD(+) and a high-affinity inhibitor, 2-deoxy-d-glucitol 6-(E)-vinylhomophosphonate. This structure reveals interactions between the enzyme active site residues and the inhibitor that are significantly different from that proposed for 2-deoxy-d-glucitol 6-phosphate in the previously published structure of MIP synthase-NAD(+)-2-deoxy-d-glucitol 6-phosphate. There are several other conformational changes in NAD(+) and the enzyme active site as well. Based on the new structural data, we propose a new and completely different mechanism for MIP synthase.
Organizational Affiliation: 
Michigan State University, Chemistry Department, East Lansing, Michigan 48824, USA.