1RKV

Structure of Phosphate complex of ThrH from Pseudomonas aeruginosa


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.187 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The thrH Gene Product of Pseudomonas aeruginosa Is a Dual Activity Enzyme with a Novel Phosphoserine:Homoserine Phosphotransferase Activity.

Singh, S.K.Yang, K.Karthikeyan, S.Huynh, T.Zhang, X.Phillips, M.A.Zhang, H.

(2004) J Biol Chem 279: 13166-13173

  • DOI: https://doi.org/10.1074/jbc.M311393200
  • Primary Citation of Related Structures:  
    1RKU, 1RKV

  • PubMed Abstract: 

    The thrH gene product of Pseudomonas aeruginosa has been shown to complement both homoserine kinase (thrB gene product) and phosphoserine phosphatase (serB gene product) activities in vivo. Sequence comparison has revealed that ThrH is related to phosphoserine phosphatases (PSP, EC 3.1.3.3) and belongs to the l-2-haloacid dehalogenase-like protein superfamily. We have solved the crystal structures of ThrH in the apoform and in complex with a bound product phosphate. The structure confirms an overall fold similar to that of PSP. Most of the catalytic residues of PSP are also conserved in ThrH, suggesting that similar catalytic mechanisms are used by both enzymes. Spectrophotometry-based in vitro assays show that ThrH is indeed a phosphoserine phosphatase with a K(m) of 0.207 mm and k(cat) of 13.4 min(-1), comparable with those of other PSPs. More interestingly, using high pressure liquid chromatography-based assays, we have demonstrated that ThrH is able to further transfer the phosphoryl group to homoserine using phosphoserine as the phosphoryl group donor, indicating that ThrH has a novel phosphoserine:homoserine phosphotransferase activity.


  • Organizational Affiliation

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
homoserine kinase
A, B
206Pseudomonas aeruginosa PAO1Mutation(s): 0 
Gene Names: ThrH
EC: 3.1.3.3
UniProt
Find proteins for Q9I2Y2 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore Q9I2Y2 
Go to UniProtKB:  Q9I2Y2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9I2Y2
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download Ideal Coordinates CCD File 
C [auth A],
H [auth B]
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
EDO
Query on EDO

Download Ideal Coordinates CCD File 
F [auth A],
G [auth A],
K [auth B],
L [auth B]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A],
I [auth B],
J [auth B]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.187 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.751α = 90
b = 93.021β = 90
c = 132.348γ = 90
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-03-30
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2018-04-04
    Changes: Data collection
  • Version 1.4: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description