1PSC

PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Work: 0.152 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Three-dimensional structure of the binuclear metal center of phosphotriesterase.

Benning, M.M.Kuo, J.M.Raushel, F.M.Holden, H.M.

(1995) Biochemistry 34: 7973-7978

  • DOI: https://doi.org/10.1021/bi00025a002
  • Primary Citation of Related Structures:  
    1PSC

  • PubMed Abstract: 

    Phosphotriesterase, as isolated from Pseudomonas diminuta, is capable of detoxifying widely used pesticides such as paraoxon and parathion and various mammalian acetylcholinesterase inhibitors. The enzyme requires a binuclear metal center for activity. Recently, the three-dimensional structure of the apoenzyme was solved (Benning et al., 1994) and shown to consist of an alpha/beta-barrel. Here we describe the three-dimensional structure of the holoenzyme, reconstituted with cadmium, as determined by X-ray crystallographic analysis to 2.0-A resolution. Crystals employed in the investigation belonged to the space group C2 with unit cell dimensions of a = 129.5 A, b = 91.4 A, c = 69.4 A, beta = 91.9 degrees, and two subunits in the asymmetric unit. There are significant differences in the three-dimensional architecture of the apo and holo forms of the enzyme such that their alpha-carbon positions superimpose with a root-mean-square deviation of 3.4 A. The binuclear metal center is located at the C-terminus of the beta-barrel with the cadmiums separated by 3.8 A. There are two bridging ligands to the metals: a water molecule (or possibly a hydroxide ion) and a carbamylated lysine residue (Lys 169). The more buried cadmium is surrounded by His 55, His 57, Lys 169, Asp 301, and the bridging water in a trigonal bipyramidal arrangement. The second metal is coordinated in a distorted octahedral geometry by His 201, His 230, Lys 169, the bridging water molecule, and two additional solvents.


  • Organizational Affiliation

    Institute for Enzyme Research, Graduate School, University of Wisconsin, Madison 53705, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PHOSPHOTRIESTERASE
A, B
365Brevundimonas diminutaMutation(s): 0 
EC: 3.1.8.1
UniProt
Find proteins for P0A434 (Brevundimonas diminuta)
Explore P0A434 
Go to UniProtKB:  P0A434
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A434
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Work: 0.152 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 129.5α = 90
b = 91.4β = 91.9
c = 69.4γ = 90
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-04-01
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-06-05
    Changes: Data collection, Database references, Derived calculations, Other