1OPS

ICE-BINDING SURFACE ON A TYPE III ANTIFREEZE PROTEIN FROM OCEAN POUT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.204 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.

Yang, D.S.Hon, W.C.Bubanko, S.Xue, Y.Seetharaman, J.Hew, C.L.Sicheri, F.

(1998) Biophys J 74: 2142-2151

  • DOI: https://doi.org/10.1016/S0006-3495(98)77923-8
  • Primary Citation of Related Structures:  
    1OPS

  • PubMed Abstract: 

    Antifreeze proteins (AFPs) adsorb to surfaces of growing ice crystals, thereby arresting their growth. The prevailing hypothesis explains the nature of adsorption in terms of a match between the hydrophilic side chains on the AFP's ice-binding surface (IBS) and the water molecules on the ice surface. The number and spatial arrangement of hydrogen bonds thus formed have been proposed to account, respectively, for the binding affinity and specificity. The crystal structure of a type III AFP from ocean pout (isoform HPLC-3) has been determined to 2.0-A resolution. The structure reveals an internal dyad motif formed by two 19-residue, loop-shaped elements. Based on of the flatness observed on the type I alpha-helical AFP's IBS, an automated algorithm was developed to analyze the surface planarity of the globular type III AFP and was used to identify the IBS on this protein. The surface with the highest flatness score is formed by one loop of the dyad motif and is identical to the IBS deduced from earlier mutagenesis studies. Interestingly, 67% of this surface contains nonpolar solvent-accessible surface area. The success of our approach to identifying the IBS on an AFP, without considering the presence of polar side chains, indicates that flatness is the first approximation of an IBS. We further propose that the specificity of interactions between an IBS and a particular ice-crystallographic plane arises from surface complementarity.


  • Organizational Affiliation

    Department of Biochemistry, Faculty of Health Science, McMaster University, Hamilton, Ontario, Canada. yang@xtliris.csu.mcmaster.ca


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TYPE III ANTIFREEZE PROTEIN64Zoarces americanusMutation(s): 0 
UniProt
Find proteins for P19608 (Zoarces americanus)
Explore P19608 
Go to UniProtKB:  P19608
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19608
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.204 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 23.06α = 90
b = 40.79β = 100.6
c = 29.99γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
R-AXISdata reduction
R-AXISdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-05-20
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Other
  • Version 1.4: 2024-04-03
    Changes: Refinement description