1NYI

Crosslinked Hammerhead Ribozyme Initial State


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.85 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.206 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

A helical twist-induced conformational switch activates cleavage in the hammerhead ribozyme.

Dunham, C.M.Murray, J.B.Scott, W.G.

(2003) J Mol Biol 332: 327-336

  • DOI: https://doi.org/10.1016/s0022-2836(03)00843-x
  • Primary Citation of Related Structures:  
    1NYI, 1Q29

  • PubMed Abstract: 

    We have captured the structure of a pre-catalytic conformational intermediate of the hammerhead ribozyme using a phosphodiester tether formed between I and Stem II. This phosphodiester tether appears to mimic interactions in the wild-type hammerhead RNA that enable switching between nuclease and ligase activities, both of which are required in the replicative cycles of the satellite RNA viruses from which the hammerhead ribozyme is derived. The structure of this conformational intermediate reveals how the attacking nucleophile is positioned prior to cleavage, and demonstrates how restricting the ability of Stem I to rotate about its helical axis, via interactions with Stem II, can inhibit cleavage. Analogous covalent crosslinking experiments have demonstrated that imposing such restrictions on interhelical movement can change the hammerhead ribozyme from a nuclease to a ligase. Taken together, these results permit us to suggest that switching between ligase and nuclease activity is determined by the helical orientation of Stem I relative to Stem II.


  • Organizational Affiliation

    Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-R(P*GP*UP*GP*GP*UP*CP*UP*GP*AP*UP*GP*AP*GP*GP*CP*C)-3'16synthetic construct
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
5'-R(*GP*CP*CP*GP*AP*AP*AP*CP*UP*CP*GP*UP*AP*AP*GP*AP*GP*UP*CP*AP*CP*CP*AP*C)-3'24synthetic construct
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.85 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.206 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.639α = 90
b = 65.639β = 90
c = 137.475γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
SCALAdata scaling
CNSrefinement
MOSFLMdata reduction
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-02-24
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-01-31
    Changes: Advisory
  • Version 1.4: 2018-02-28
    Changes: Experimental preparation
  • Version 1.5: 2019-07-24
    Changes: Data collection, Derived calculations, Refinement description
  • Version 1.6: 2024-02-14
    Changes: Data collection, Database references, Derived calculations
  • Version 1.7: 2024-04-03
    Changes: Refinement description
  • Version 2.0: 2024-10-16
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Non-polymer description, Source and taxonomy, Structure summary