1MYW

CRYSTAL STRUCTURE OF A YELLOW FLUORESCENT PROTEIN WITH IMPROVED MATURATION AND REDUCED ENVIRONMENTAL SENSITIVITY


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.218 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Crystal Structure of Venus, a Yellow Fluorescent Protein with Improved Maturation and Reduced Environmental Sensitivity

Rekas, A.Alattia, J.R.Nagai, T.Miyawaki, A.Ikura, M.

(2002) J Biol Chem 277: 50573-50578

  • DOI: https://doi.org/10.1074/jbc.M209524200
  • Primary Citation of Related Structures:  
    1MYW

  • PubMed Abstract: 

    Yellow emission variants of green fluorescent protein (GFP) have been found useful in a variety of applications in biological systems due to their red-shifted emission spectrum and sensitivity to environmental parameters, such as pH and ionic strength. However, slow maturation properties and new requirements for more intense fluorescence necessitated further mutagenesis studies of these proteins. Venus, a new variant with improved maturation and brightness, as well as reduced environmental dependence, was recently developed by introducing five mutations into the well characterized variant, enhanced yellow fluorescent protein (EYFP). In this paper, we present the crystal structure of Venus at 2.2 A resolution, which enabled us to correlate its novel features with these mutation points. The rearrangement of several side chains near the chromophore, initiated by the F46L mutation, was found to improve maturation at 37 degrees C by removing steric and energetic constraints, which may hinder folding of the polypeptide chain, and by accelerating the oxidation of the Calpha-Cbeta bond of Tyr(66) during chromophore formation. M153T, V163A, and S175G were also found to improve the rate of maturation by creating regions of greater flexibility. F64L induced large conformational changes in the molecule, leading to the removal of halide sensitivity by preventing ion access to the binding site.


  • Organizational Affiliation

    Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Green fluorescent protein237Aequorea victoriaMutation(s): 9 
UniProt
Find proteins for P42212 (Aequorea victoria)
Explore P42212 
Go to UniProtKB:  P42212
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP42212
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
CR2
Query on CR2
A
L-PEPTIDE LINKINGC13 H13 N3 O4GLY, TYR, GLY
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.218 
  • Space Group: P 31 1 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 82.704α = 90
b = 82.704β = 90
c = 72.555γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
CNSrefinement
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-01-14
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-10-27
    Changes: Database references, Derived calculations
  • Version 1.4: 2024-10-16
    Changes: Data collection, Refinement description, Structure summary